請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49213完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱有花(You-Hua Chu) | |
| dc.contributor.author | Wen-Ping Lo | en |
| dc.contributor.author | 羅文斌 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:19:33Z | - |
| dc.date.available | 2018-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-18 | |
| dc.identifier.citation | M. A. Abramowicz and P. C. Fragile. Foundations of Black Hole Accretion Disk Theory. Living Reviews in Relativity, 16, 2013. ISSN 1433-8351. doi: 10.12942/lrr-2013-1. URLhttp://adsabs.harvard.edu/abs/2013LRR....16....1A.
J. Aleksić, S. Ansoldi, L. Antonelli, and P. Antoranz. Black hole lightning due to particle acceleration at subhorizon scales. Science, (November):1–11, 2014. URL http://www.sciencemag.org/content/early/2014/11/05/science.1256183. short. S. W. Allen, R. J. H. Dunn, A. C. Fabian, G. B. Taylor, and C. S. Reynolds. The relation between accretion rate and jet power in X-ray luminous elliptical galaxies. Monthly Notices of the Royal Astronomical Society, 372(1):21–30, 2006. ISSN 00358711. doi: 10.1111/j.1365-2966.2006.10778.x. F. K. Baganoff, Y. Maeda, M. Morris, M. W. Bautz, W. N. Brandt, W. Cui, J. P. Doty, E. D. Feigelson, G. P. Garmire, S. H. Pravdo, G. R. Ricker, and L. K. Townsley. Chandra X Ray Spectroscopic Imaging of Sagittarius A* and the Central Parsec of the Galaxy. The Astrophysical Journal, 591(2):891–915, 7 2003. ISSN 0004-637X. doi: 10.1086/ 375145. URL http://adsabs.harvard.edu/abs/2003ApJ...591..891B. R. D. Blandford and M. C. Begelman. On the fate of gas accreting at a low rate on to a black hole. Mnras, 303:L1–L5, 1999. ISSN 0035-8711. doi: 10.1046/j.1365-8711. 1999.02358.x. R. D. Blandford and R. L. Znajek. Electromagnetic extraction of energy from Kerr black holes. Monthly Notices of the Royal Astronomical Society, 179(3):433–456, 7 1977. ISSN 0035-8711. doi: 10.1093/mnras/179.3.433. URL http://adsabs.harvard.edu/ abs/1977MNRAS.179..433B. B. Boccardi. The two-sided relativistic out ow in Cygnus A : extragalactic jet physics at extreme spatial resolution. PhD Thesis, 2015. B. Boccardi, T. P. Krichbaum, U. Bach, F. Mertens, E. Ros, W. Alef, and J. a. Zensus. The stratified two-sided jet of Cygnus A. Acceleration and collimation. Astronomy & Astrophysics, pages 1–9, 2015. ISSN 14320746. doi: 10.1051/0004-6361/201526985. URL http://arxiv.org/abs/1509.06250. B. Boccardi, T. P. Krichbaum, U. Bach, M. Bremer, and J. A. Zensus. First 3 mm-VLBI imaging of the two-sided jet in Cygnus A. Astronomy & Astrophysics, 588:L9, 3 2016. ISSN 0004-6361. doi: 10.1051/0004-6361/201628412. URL http://adsabs.harvard. edu/abs/2016A{\%}26A...588L...9B. H. Bondi. On Spherically Symmetrical Accretion. Monthly Notices of the Royal Astronom- ical Society, 112(2):195–204, 4 1952. ISSN 0035-8711. doi:10.1093/mnras/112.2.195. URL http://adsabs.harvard.edu/abs/1952MNRAS.112..195B. G. A. Bower, R. F. Green, A. Danks, T. Gull, S. Heap, J. Hutchings, C. Joseph, M. E. Kaiser, R. Kimble, S. Kraemer, D. Weistrop, B. Woodgate, D. Lindler, R. S. Hill, E. M. Malumuth, S. Baum, V. Sarajedini, T. M. Heckman, A. S. Wilson, and D. O. Richstone. Kinematics of the Nuclear Ionized Gas in the Radio Galaxy M84 (NGC 4374). The Astrophysical Journal, 492(2):L111–L114, 1 1998. ISSN 0004637X. doi: 10.1086/ 311109. URL http://adsabs.harvard.edu/abs/1998ApJ...492L.111B. B. J. Burn. On the depolarization of discrete radio sources by Faraday dispersion. Monthly Notices of the Royal Astronomical Society, 133:67, 1966. doi: 10.1093/mnras/133.1.67. URL http://adsabs.harvard.edu/abs/1966MNRAS.133...67B. K. Ebneter and B. Balick. A catalog of dusty elliptical galaxies. The Astronomical Journal, 90:183, 2 1985. ISSN 00046256. doi: 10.1086/113724. URL http://adsabs.harvard. edu/abs/1985AJ.....90..183E. Esin, McClintock, and Narayan. Advection-Dominated Accretion and the Spec- tral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991. The As- trophysical Journal, 489(2):865–889, 1997. URL http://adsabs.harvard.edu/abs/ 1997ApJ...489..865E. B. L. Fanaroff and J. M. Riley. The Morphology of Extragalactic Radio Sources of High and Low Luminosity. Monthly Notices of the Royal Astronomical Society, 167(1):31P– 36P, 4 1974. ISSN 0035-8711. doi: 10.1093/mnras/167.1.31P. URL http://adsabs. harvard.edu/abs/1974MNRAS.167P..31F. L. Ferrarese and H. C. Ford. Nuclear Disks of Gas and Dust in Early Type Galaxies and the Hunt for Massive Black Holes: Hubble Space Telescope Observations of NGC 6251. The Astrophysical Journal, 515(2):583–602, 4 1999. ISSN 0004-637X. doi: 10.1086/307046. URL http://adsabs.harvard.edu/abs/1999ApJ...515..583F. Frank, King, and Raine. Accretion Power in Astrophysics: Third Edition. Ac- cretion Power in Astrophysics, 2002. URL http://adsabs.harvard.edu/abs/2002apa. .book.....F. Y. Fujita, N. Kawakatu, and I. Shlosman. AGN jet power and feedback controlled by Bondi accretion in brightest cluster galaxies. 000(June), 2014. URL http://arxiv.org/ abs/1406.6366. K. Gebhardt, J. Adams, D. Richstone, T. R. Lauer, S. M. Faber, K. Gultekin, J. Murphy, and S. Tremaine. THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS. The Astrophysical Journal, 729(2):119, 3 2011. ISSN 0004-637X. doi: 10.1088/0004-637X/729/2/119. URL http://adsabs.harvard. edu/abs/2011ApJ...729..119G. S. J. George, J. M. Stil, and B. W. Keller. Detection thresholds and bias correction in polarized intensity. Publications of the Astronomical Society of Australia, 29(3):214– 220, 6 2012. ISSN 13233580. doi: 10.1071/AS11027. URL http://arxiv.org/abs/ 1106.5362http://dx.doi.org/10.1071/AS11027. S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, and T. Ott. MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER. The Astrophysical Journal, 692(2):1075–1109, 2 2009. ISSN 0004-637X. doi: 10.1088/0004-637X/692/2/1075. URL http://adsabs. harvard.edu/abs/2009ApJ...692.1075G. M. Gliozzi, R. M. Sambruna, and W. N. Brandt. On the origin of the X-rays and the nature of accretion in NGC 4261. Astronomy and Astrophysics, 408(3):949–959, 9 2003. ISSN 0004-6361. doi: 10.1051/0004-6361:20031050. URL http://adsabs. harvard.edu/abs/2003A{\%}26A...408..949G. F. Haardt and L. Maraschi. A two-phase model for the X-ray emission from Seyfert galaxies. The Astrophysical Journal, 380:L51, 10 1991. ISSN 0004-637X. doi: 10.1086/186171. URL http://adsabs.harvard.edu/abs/1991ApJ...380L..51H. Hamaker, Bregman, and Sault. Understanding radio polarimetry. I. Mathematical foundations. Astronomy and Astrophysics Supplement, 1996. URL http://adsabs. harvard.edu/abs/1996A{\%}26AS..117..137H. L. C. Ho. Nuclear Activity in Nearby Galaxies. Annual Review of Astronomy and As- trophysics, 46(1):475–539, 9 2008. ISSN 0066-4146. doi: 10.1146/annurev.astro. 45.051806.110546. URL http://adsabs.harvard.edu/abs/2008ARA{\%}26A..46. .475H. L. C. Ho. RADIATIVELY INEFFICIENT ACCRETION IN NEARBY GALAXIES. The Astrophysical Journal, 699(1):626–637, 7 2009. ISSN 0004-637X. doi: 10.1088/ 0004-637X/699/1/626. URL http://adsabs.harvard.edu/abs/2009ApJ...699..626H. I. V. Igumenshchev and R. Narayan. Three dimensional Magnetohydrodynamic Simula- tions of Spherical Accretion. The Astrophysical Journal, 566(1):137–147, 2002. ISSN 0004-637X. doi: 10.1086/338077. URL http://iopscience.iop.org/0004-637X/566/ 1/137/fulltext/ K. Inayoshi, Z. Haiman, and J. P. Ostriker. Hyper-Eddington accretion flows onto massive black holes. page 19, 11 2015. URL http://arxiv.org/abs/1511.02116. T. W. Jones and S. L. Odell. Transfer of polarized radiation in self-absorbed synchrotron sources. I. Results for a homogeneous source. Astronomical Journal, 214:522–539, 1977. ISSN 1098-6596. doi: 10.1086/155278. URL http://adsabs.harvard.edu/ abs/1977ApJ...214..522J. J. D. Kraus and K. R. Carver. Electromagnetics. 1973. ISBN 007112666X. T. P. Krichbaum, W. Alef, A. Witzel, J. A. Zensus, R. S. Booth, A. Greve, and A. E. E. Rogers. VLBI observations of CygnusA with sub-milliarcsecond resolution. Astron- omy and Astrophysics, 1998. URL http://adsabs.harvard.edu/abs/1998A{\%}26A. ..329..873K. C. Y. Kuo, K. Asada, R. Rao, M. Nakamura, J. C. Algaba, H. B. Liu, M. Inoue, P. M. Koch, P. T. P. Ho, S. Matsushita, H.-Y. Pu, K. Akiyama, H. Nishioka, and N. Pradel. Measuring Mass Accretion Rate Onto the Supermassive Black Hole in M87 Using Faraday Rotation Measure With the Submillimeter Array. The Astro- physical Journal, 783(2):L33, 2014. ISSN 2041-8205. doi: 10.1088/2041-8205/ 783/2/L33. URL http://stacks.iop.org/2041-8205/783/i=2/a=L33?key=crossref. 09c8f409cd19ed88f61110b148ef5aeb. E. Lopez-Rodriguez, C. Packham, C. Tadhunter, R. Mason, E. Perlman, A. Alonso- Herrero, C. Ramos Almeida, K. Ichikawa, N. A. Levenson, J. M. Rodriguez-Espinosa, C. A. Alvarez, E. A. Ramirez, and C. M. Telesco. Polarized Mid-Infrared Synchrotron Emission in the Core of Cygnus a. Apj, 793(2):81, 2014. ISSN 1538-4357. doi: 10.1088/0004-637X/793/2/81. URL http://stacks.iop.org/0004-637X/793/i=2/a= 81?key=crossref.3dc13b954168c4f95f33662ce6b49144{ extbackslash}npapers2: //publication/doi/10.1088/0004-637X/793/2/81. D. Lynden-Bell. Galactic Nuclei as Collapsed Old Quasars. Nature, 223:690–694, 1969. doi: 10.1038/223690a0. URL http://adsabs.harvard.edu/abs/1969Natur. 223..690L. R. Mahadevan. Scaling Laws for Advection Dominated Flows: Applications to Low Luminosity Galactic Nuclei. The Astrophysical Journal, 477:585–601, 9 1996. ISSN 0004-637X. doi: 10.1086/303727. URL http://arxiv.org/abs/astro-ph/ 9609107http://dx.doi.org/10.1086/303727. D. P. Marrone. Submillimeter Properties of Sagittarius A*: The Polarization and Spectrum from 230 to 690 GHz and the Submillimeter Array Polarimeter. PhD Thesis, (August), 2006. D. P. Marrone, J. M. Moran, J. H. Zhao, and R. Rao. Interferometric Measurements of Variable 340 GHz Linear Polarization in Sagittarius A*. The Astrophysical Journal, 640(1):308–318, 11 2005. ISSN 0004-637X. doi: 10.1086/500106. URL http:// stacks.iop.org/0004-637X/640/i=1/a=308. B. R. McNamara, M. Rohanizadegan, and P. E. J. Nulsen. ARE RADIO ACTIVE GALACTIC NUCLEI POWERED BY ACCRETION OR BLACK HOLE SPIN? The Astrophysical Journal, 727(1):39, 1 2011. ISSN 0004-637X. doi: 10.1088/0004-637X/ 727/1/39. URL http://iopscience.iop.org/article/10.1088/0004-637X/727/1/39. F. Melia. An accreting black hole model for Sagittarius A. The Astrophysical Journal, 387: L25, 3 1992. ISSN 0004-637X. doi: 10.1086/186297. URL http://adsabs.harvard. edu/abs/1992ApJ...387L..25M. F. J. Meyer and J. B. Nicoll. Prediction, Detection, and Correction of Faraday Rotation in Full-Polarimetric L-Band SAR Data. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 46(10), 2008. doi: 10.1109/TGRS.2008.2003002. G. Migliori, P. Grandi, E. Torresi, C. Dermer, J. Finke, A. Celotti, R. Mukherjee, M. Er- rando, F. Gargano, F. Giordano, and M. Giroletti. Implications for the structure of the relativistic jet from multiwavelength observations of NGC 6251. Astronomy & Astrophysics, 533:A72, 8 2011. ISSN 0004-6361. doi: 10.1051/0004-6361/201116808. URL http://adsabs.harvard.edu/abs/2011A{\%}26A...533A..72M. D. Morris, V. Radhakrishnan, and G. A. Seielstad. On the Measurement of Polarization Distributions Over Radio Sources. The Astrophysical Journal, 139:551, 2 1964. ISSN 0004-637X. doi: 10.1086/147784. URL http://adsabs.harvard.edu/doi/10.1086/ 147784. R. Narayan and A. C. Fabian. Bondi flow from a slowly rotating hot atmosphere. Monthly Notices of the Royal Astronomical Society, 415(4):3721–3730, 2011. ISSN 00358711. doi: 10.1111/j.1365-2966.2011.18987.x. R. Narayan and I. Yi. Advection-dominated accretion: A self-similar solution. The As- trophysical Journal, 428:L13, 6 1994. ISSN 0004-637X. doi: 10.1086/187381. URL http://adsabs.harvard.edu/abs/1994ApJ...428L..13N. H. Oda, M. Machida, K. E. Nakamura, and R. Matsumoto. THERMAL EQUILIBRIA OF OPTICALLY THIN, MAGNETICALLY SUPPORTED, TWO-TEMPERATURE, BLACK HOLE ACCRETION DISKS. The Astrophysical Journal, 712(1):639–652, 3 2010. ISSN 0004-637X. doi: 10.1088/0004-637X/712/1/639. URL http://adsabs. harvard.edu/abs/2010ApJ...712..639O. L. Oster. Emission, Absorption, and Conductivity of a Fully Ionized Gas at Radio Fre- quencies. Reviews of Modern Physics, 33(4):525–543, 10 1961. ISSN 0034-6861. doi: 10.1103/RevModPhys.33.525. URL http://adsabs.harvard.edu/abs/1961RvMP... 33..525O. E. O’Sullivan, D. M. Worrall, M. Birkinshaw, G. Trinchieri, A. Wolter, A. Zezas, and S. Giacintucci. Interaction between the intergalactic medium and central radio source in the NGC 4261 group of galaxies. Monthly Notices of the Royal Astronomical Society, 416(4):2916–2931, 2011. ISSN 00358711. doi: 10.1111/j.1365-2966.2011.19239.x. F. N. Owen, M. J. Ledlow, G. E. Morrison, and J. M. Hill. The Cluster of Galaxies Surrounding Cygnus A. The Astrophysical Journal, 488(1):L15–L17, 10 1997. ISSN0004637X. doi: 10.1086/310908. URL http://adsabs.harvard.edu/abs/1997ApJ... 488L..15O. R. L. Plambeck, G. C. Bower, R. Rao, D. P. Marrone, S. G. Jorstad, A. P. Marscher, S. S. Doeleman, V. L. Fish, and M. D. Johnson. Probing the Parsec-Scale Ac- cretion Flow of 3C 84 With Millimeter Wavelength Polarimetry. The Astro- physical Journal, 797(1):66, 2014. ISSN 1538-4357. doi: 10.1088/0004-637X/ 797/1/66. URL http://stacks.iop.org/0004-637X/797/i=1/a=66?key=crossref. 59b27c9e7c35e2acf117c90cdb841bde. E. Quataert and A. Gruzinov. Constraining the accretion rate onto sagittarius a* using linear polarization. The Astrophysical Journal, 545(2):842, 2000. ISSN 0004-637X. doi: 10.1086/317845. URL http://iopscience.iop.org/0004-637X/545/2/842. M. J. Rees. Extragalactic Variable Radio Sources. Nature, 227:1303–1306, 1970. doi: 10.1038/2271303a0. URL http://adsabs.harvard.edu/abs/1970Natur.227.1303R. C. S. Reynolds. Measuring Black Hole Spin Using X-Ray Reflection Spectroscopy. Space Science Reviews, 183(1-4):277–294, 8 2013. ISSN 0038-6308. doi: 10.1007/ s11214-013-0006-6. URL http://adsabs.harvard.edu/abs/2014SSRv..183..277R. G. B. Rybicki and A. P. Lightman. Radiative processes in astrophysics. 1979. ISBN 9781139171083. doi: 10.1017/CBO9781139171083.007. E. Salpeter. Accretion of Interstellar Matter by Massive Objects. Astrophysical Journal Letter, 53(9):796–800, 1964. ISSN 1098-6596. doi: 10.1017/CBO9781107415324. 004. M. Schmidt. 3C 273 : A Star-Like Object with Large Red-Shift. Nature, 197:1040, 1963. doi: 10.1038/1971040a0. URL http://adsabs.harvard.edu/abs/1963Natur. 197.1040S. N. I. Shakura and R. A. Sunyaev. A Theory of the Instability of disk Accretion on to Black Holes and the Variability of Binary X-ray Sources, Galactic Nuclei and Quasars*.Monthly Notices of the Royal Astronomical Society, 175(3):613–632, 6 1976. ISSN 0035-8711. doi: 10.1093/mnras/175.3.613. URL http://adsabs.harvard.edu/abs/ 1976MNRAS.175..613S. C. Tadhunter, A. Marconi, D. Axon, K. Wills, T. G. Robinson, and N. Jackson. Spec- troscopy of the near-nuclear regions of Cygnus A: estimating the mass of the su- permassive black hole. Monthly Notices of the Royal Astronomical Society, 342(3): 861–875, 7 2003. ISSN 00358711. doi: 10.1046/j.1365-8711.2003.06588.x. URL http://adsabs.harvard.edu/abs/2003MNRAS.342..861T. R. V. Vasudevan, A. C. Fabian, P. Gandhi, L. M. Winter, and R. F. Mushotzky. The power output of local obscured and unobscured AGN: Crossing the absorption barrier with Swift/ BAT and IRAS. Monthly Notices of the Royal Astronomical Society, 402 (2):1081–1098, 2010. ISSN 00358711. doi: 10.1111/j.1365-2966.2009.15936.x. J. L. Walsh, A. J. Barth, L. C. Ho, and M. Sarzi. THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPEC- TROGRAPH OBSERVATIONS. The Astrophysical Journal, 770(2):86, 6 2013. ISSN 0004-637X. doi: 10.1088/0004-637X/770/2/86. URL http://adsabs.harvard.edu/ abs/2013ApJ...770...86W. X.-B. Wu, F. Wang, X. Fan, W. Yi, W. Zuo, F. Bian, L. Jiang, I. D. McGreer, R. Wang, J. Yang, Q. Yang, D. Thompson, and Y. Beletsky. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature, 518(7540):512–5, 2 2015. ISSN 1476-4687. doi: 10.1038/nature14241. URL http://dx.doi.org/10.1038/ nature14241. F. G. Xie and F. Yuan. Radiative efficiency of hot accretion flows. Monthly Notices of the Royal Astronomical Society, 427(2):1580–1586, 2012. ISSN 00358711. doi: 10.1111/j.1365-2966.2012.22030.x. F. Yuan and R. Narayan. Hot Accretion Flows Around Black Holes. Annual Re- view of Astronomy and Astrophysics, 52(1):529–588, 8 2014. ISSN 0066-4146.doi: 10.1146/annurev-astro-082812-141003. URL http://adsabs.harvard.edu/abs/ 2014ARA{\%}26A..52..529Y. F. Yuan, E. Quataert, and R. Narayan. Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A*. The Astrophysical Journal, 598(1):301– 312, 2003. ISSN 0004-637X. doi: 10.1086/378716. URL http://adsabs.harvard. edu/abs/2003ApJ...598..301Y. M. Zamaninasab, E. Clausen-Brown, T. Savolainen, and a. Tchekhovskoy. Dy- namically important magnetic fields near accreting supermassive black holes. Nature, 510(7503):126–128, 2014. ISSN 0028-0836. doi: 10.1038/nature13399. URL http://www.nature.com/nature/journal/v510/n7503/full/nature13399. html{ extbackslash}nhttp://www.nature.com/nature/journal/v510/n7503/ pdf/nature13399.pdf. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49213 | - |
| dc.description.abstract | 測量超大質量黑洞鄰近之吸積率,可以由觀測上給出對於吸積流模型之限制,也能探討相對論性噴流的動力機制。此論文聚焦於低亮度活躍星系核(low-luminosity active galactic nuclei),其低亮度被視為是由於其超大質量黑洞之吸積流為低輻射效率。藉由次毫米波陣列望遠鏡測量了天鵝座A 之核心在毫米波段之偏振輻射。在此觀測中,基於天鵝座A 之偏振性質在統計上缺乏有效之測量值,藉由去偏振化機制、軔致輻射吸收之探討及半解析平流主導吸積流光譜能量分佈之擬和,計算出旋轉量(rotation measure)、吸積率(the mass accretion)、以及吸積功率(accretion power) 之觀測下限值。並由此觀測得到排除對流主導吸積流模型之結論。 | zh_TW |
| dc.description.abstract | Unveiling the nature of accretion process onto the supermassive black hole (SMBH) is one of the primary purposes in modern high energy astrophysics. Constraining mass accretion rate (M ̇ ) can not only clarify the features of in- flow but also connect to the dynamics of outflow. In this dissertation, we concentrate on the low-luminosity active galactic nuclei (LLAGN) of Cygnus A, which are thought to be powered by radiatively inefficient accretion flow (RIAF). Faraday rotation measure (RM), the tracer of plasma density, pro- vides a powerful tool that can be used to investigate the mass accretion rate near the SMBH of LLAGN. We present the polarimetric observation results towards Cygnus A utilizing Submillimeter Array at 230 GHz and obtain the observational constraint on RM. With the scenarios of beam/bandwidth de- polarization and advection-dominated accretion flow model fitting, the mass accretion rate and the accretion type of Cygnus A can be constrained, and the convection-dominated accretion flow solution is excluded. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:19:33Z (GMT). No. of bitstreams: 1 ntu-105-R03222068-1.pdf: 8050221 bytes, checksum: be0d293e781e828df340b38fff382541 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝 v
摘要 vii Abstract ix 1 Introduction 1 1.1 Active Galactic Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Low-Luminosity AGN . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Accretion in high energy astrophysics . . . . . . . . . . . . . . . . . . . 3 1.2.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Bondi Theory: Spherical Inflow . . . . . . . . . . . . . . . . . . 5 1.2.3 Cold Accretion . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Hot Accretion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.5 Outflows in RIAF solutions . . . . . . . . . . . . . . . . . . . . 12 1.3 Observational Constraints On The Mass Accretion Rate _M. . . . . . . . 13 1.3.1 Rotation Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.2 Free-Free Absorption . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4 This thesis: Cygnus A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2 Polarimetric Observation 25 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Background of Interferometric Polarimetry . . . . . . . . . . . . . . . . 26 2.2.1 The Black-box Approach . . . . . . . . . . . . . . . . . . . . . . 26 2.2.2 Jones/Muller Matrices Formulation . . . . . . . . . . . . . . . . 29 2.3 Polarimetric Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 SMA Observation Towards Cygnus A 35 3.1 The Procedures of Data Calibration . . . . . . . . . . . . . . . . . . . . 36 3.1.1 Confirming the Calibrations . . . . . . . . . . . . . . . . . . . . 37 3.2 The Error Estimation on the Polarization Fraction . . . . . . . . . . . . . 37 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4 Discussion 63 4.1 Observational Implications . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.1 Bandwidth Depolarization . . . . . . . . . . . . . . . . . . . . . 64 4.1.2 Beam Depolarization . . . . . . . . . . . . . . . . . . . . . . . . 67 4.1.3 Estimating Plasma Number Density with FFA and RIAF Model . 68 4.2 Constraints On The Mass Accretion Rate _M. . . . . . . . . . . . . . . . 74 4.2.1 Constrain _M with Beam Depolarization Scenario . . . . . . . . . 74 4.2.2 Constrain _M with Bandwidth Depolarization. . . . . . . . . . . . 85 4.2.3 Summary on the Beam and Bandwidth Depolarization . . . . . . 85 4.2.4 Use Free-Free Absorption Coefficient to Constrain _M. . . . . . 86 4.2.5 Implications of the ADAF Spectrum From The Submm Flux . . . 90 4.3 Summarize on the Constrained _M. . . . . . . . . . . . . . . . . . . . . 93 4.4 Intrinsic Depolarization Scheme . . . . . . . . . . . . . . . . . . . . . . 94 4.4.1 Inhomogeneous Magnetic Field . . . . . . . . . . . . . . . . . . 94 4.4.2 Faraday Rotators inside Jet . . . . . . . . . . . . . . . . . . . . . 95 4.5 Inferences from Constrained _M. . . . . . . . . . . . . . . . . . . . . . 100 4.5.1 Can Accretion Power Support Jet Kinetic Power? . . . . . . . . . 100 5 Conclusion 103 A Cygnus A approved proposal 105 Bibliography 113 | |
| dc.language.iso | en | |
| dc.subject | 低亮度活躍星系核 | zh_TW |
| dc.subject | 超大質量黑洞 | zh_TW |
| dc.subject | 吸積率 | zh_TW |
| dc.subject | 天鵝座A | zh_TW |
| dc.subject | 去偏振化機制 | zh_TW |
| dc.subject | 次毫米陣列 | zh_TW |
| dc.subject | 法拉第旋轉 | zh_TW |
| dc.subject | 輻射不顯著吸積流 | zh_TW |
| dc.subject | Submillimeter Array | en |
| dc.subject | Low-Luminosity Active Galactic Nuclei | en |
| dc.subject | Radiatively-Inefficient Accretion Flow | en |
| dc.subject | Faraday Rotation Measure | en |
| dc.subject | Supermassive Black Hole | en |
| dc.subject | Cygnus A | en |
| dc.subject | Beam Depolarization | en |
| dc.title | 利用次毫米陣列研究天鵝座A超大質量黑洞之吸積流 | zh_TW |
| dc.title | Studies of the Accretion Flow onto the Supermassive
Black Hole of Cygnus A with Submillimeter Array | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 淺田圭一(Keiichi Asada) | |
| dc.contributor.oralexamcommittee | 郭政育(Cheng-Yu Kuo) | |
| dc.subject.keyword | 超大質量黑洞,吸積率,天鵝座A,去偏振化機制,次毫米陣列,法拉第旋轉,輻射不顯著吸積流,低亮度活躍星系核, | zh_TW |
| dc.subject.keyword | Supermassive Black Hole,Cygnus A,Beam Depolarization,Submillimeter Array,Faraday Rotation Measure,Radiatively-Inefficient Accretion Flow,Low-Luminosity Active Galactic Nuclei, | en |
| dc.relation.page | 122 | |
| dc.identifier.doi | 10.6342/NTU201602918 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 7.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
