Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49195
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor賴喜美(Hsi-Mei Lai)
dc.contributor.authorPo-Jung Chiouen
dc.contributor.author邱博嶸zh_TW
dc.date.accessioned2021-06-15T11:18:56Z-
dc.date.available2018-08-23
dc.date.copyright2016-11-01
dc.date.issued2016
dc.date.submitted2016-08-18
dc.identifier.citation洪偉峰。2012。以逐層自主裝多層膜奈米塗布技術開發含活性物質之高功能性澱粉膜。國立台灣大學生物資源暨農學院農業化學系碩士論文。
叢可蘭。2013。不同直鏈澱粉含量米澱粉製備多孔性微米球之研究。國立台灣大學生物資源暨農學院農業化學系碩士論文。
Abdorreza, M. N., Cheng, L. H., and Karim, A. A. 2011. Effect of plasticizers on thermal properties and heat sealability of sago starch films. Food Hydrocolloids, 25, 56-60.
Acosta, S., Jimenez, A., Chafer, M., Gonzalez-Martínez, C., and Chiralt, A. 2015. Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids, 49, 135-143.
Alberto, J., María, J. F., Pau, T., and Amparo, C. 2012. Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids, 26, 302-310.
Alexandre, M., and Dubois, P. 2000. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials and Engineering R: Reports, 28, 1-63.
Angellier, H., Molina-Boisseau, S., Belgacem, M. N., and Dufresne, A. 2005. Surface chemical modification of waxy maize starch nanocrystals. Langmuir, 21, 2425-2433.
Angles, M. N. and Dufresne A. 2000. Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules, 33, 8344-8353.
ASTM, American Society for Testing Methods. 2000. Standard test methods for water vapor transmission of materials, method E 96-00. Philadelphia, PA: American Society for Testing and Materials. Carbohydrate Polymers, 89, 504-510.
ASTM, American Society for Testing and Materials – ASTM, 2002. Standard test method for tensile properties of thin plastic sheeting, method D882-02. Philadelphia, PA: American Society for Testing and Materials.
ASTM, American Society for Testing Methods. 2005. Standard test methods for water vapor transmission of materials. E 96/E 96M - 05. In: Annual book of American Society for Testing and Materials, Philadelphia, PA: American Society for Testing and Materials.
Ashwar, B. A., Shah, A., Gani, A., Shah, U., Gani, A., Wani, I. A., and Wani, S. M. 2015. Rice starch active packaging films loaded with antioxidants—development and characterization Starch/Stärke, 67, 294-302.
Avella, M.; De Vlieger, J. J., Errico, M. E., Fischer, S.; Vacca, P., and Volpe, M. G. 2005. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem., 93, 467-474.
Bari, S. S., Chatterjee, A., and Mishra, S. 2016. Biodegradable polymer nanocomposites: An overview. Polymer Reviews, 56(2), 287-328.
Bertrand, P., Jonas, A., Laschewsky, A., and Legras, R. 2000. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol. Rapid Commun., 21, 319.
Bonilla, J., Talon, E., Atares, L., Vargas, M., Chiralt, A.. 2013. Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of
wheat starch–chitosan films. Journal of Food Engineering, 118, 271–278.
Budilarto, E. S., and Kamal-Eldin, A. 2015. The supramolecular chemistry of lipid oxidation and antioxidation in bulk oils. Eur. J. Lipid Sci. Technol., 117, 1095–1137.
Buleon, A., Veronese, G., and Putaux, J. L. 2007. Self-association and crystallization of amylose. Aust. J. Chem., 60, 706-718.
Chen, B. Q. and Evans, J. R. G. 2005. Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydr. Polym., 61, 455-463.
Chen, C. H., Kuo, W. S., and Lai, L. S. 2010. Water barrier and physical properties of starch/decolorized hsian-tsao leaf gum films: Impact of surfactant lamination. Food Hydrocolloids, 24, 200-207.
Choudalakis, G., and Gotsis, A. D. 2009. Permeability of polymer/clay nanocomposites: a review. European Polymer Journal, 45, 967-984.
Chung, Y. L., Ansari, S., Estevez, L., Hayrapetyan, S., Giannelis, E. G., and Lai, H. M. 2010. Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydrate Polymers, 79, 391-396.
Dean, K., Yu, L., Wu, D.Y. 2007. Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Composites Science and Technology, 67, 413-421.
Decher, G. and Hong, J. D. 1991. Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol. Chem. Macromol. Symp. 46, 321-327.
Decher, G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. 1997. Science, 277, 1232.
Doutch, J., Bason, M., Franceschini, F., James, K., Clowes, D., and Gilbert, E. P. 2012. Structural changes during starch pasting using simultaneous Rapid Visco Analysis and small-angle neutron scattering. Carbohydrate Polymers 88: 1061-1071.
Dreiss, C. A., Nwabunwanne, E., Liu, R., and Brooks, N. J. 2009. Assembling and de-assembling micelles: competitive interactions of cyclodextrins and drugs with Pluronics. Soft Matter, 5, 1888-1896.
Farhoosh, R., and Hoseini-Yazdi, S. Z. 2014. Evolution of oxidative values during kinetic studies on olive oil oxidation in the rancimat test. J. Am. Oil Chem. Soc., 91, 281-293.
Farhoosh, R., Niazmand, R., Rezaei, M., and Sarabi, M. 2008. Kinetic parameter determination of vegetable oil oxidation under Rancimat test conditions. Eur. J. Lipid Sci. Technol., 110, 587-592.
Fortunati, E., Armentano, I., Zhou, Q., Iannonia, A., Saino, E., Visai, L., Berglund, L. A., and Kenny, J. M. 2012. Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydrate Polymers, 87, 1596-1605.
Fukumoto, L. R., and Mazza, G. 2000. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem., 48, 3597-3604.
Gomand, S. V., Lamberts, L., Derde, L. J., and Goesaert, H. 2010. Structural properties and gelatinisation characteristics of potato and cassava starches and mutants thereof. Food Hydrocolloids, 24, 307-317.
Guan, Y., and Zhang, Y. 2014. Dynamically bonded layer-by-layer films: dynamic properties and applications. J. APPL. POLYM. SCI., DOI: 10.1002/APP.40918.
Heinze, T., Haack, V., and Rensing, S. 2004. Starch Derivatives of high degree of functionalization. 7. Preparation of Cationic 2-hydroxypropyltrimethylammonium chloride starches. Starch/Starke, 44, 69-74.
Huang, J., Zhou, Z., Wei, M., Chen, Y., and Chang, P. R. 2008. Soy protein-based nanocomposites reinforced by supramolecular nanoplatelets assembled from Pluronic polymers/beta-cyclodextrin pseudopolyrotaxanes. Journal of Applied Polymer Science. 107, 409-417.
Huang, S. W., Frankel, E. N., and German, J. B. 1994. Antioxidant activity of α-and γ-tocopherols in bulk oils and in oil-in-water emulsions. J. Agric. Food Chem., 42, 2108-2114.
Jane, J. L., Kasemsuwan, T., Leas, S., Zobel, H., and Robyt, J. F. 1994. Anthology of starch granule morphology by scanning electron microscopy. Starch/Stärke, 46, 121–129.
Joseph, J., Dreiss, C. A., Cosgrove, T., and Pedersen, J. S. 2007. Rupturing polymeric micelles with cyclodextrins rupturing polymeric micelles with cyclodextrins. Langmuir, 23, 460-466.
Ke, Y., Lu, J., Yi, A., Zhao, J., and Qi, Z. 2000. The effects of promoter and curing process on exfoliation behavior of epoxy/clay nanocomposites, J. of Applied Polymer Science, 78(4), 808-815.
Keeney, M., Jiang, X. Y., Yamane, M., Lee, M., Goodman, S., and Yang, F. 2015. Nanocoating for biomolecule delivery using layer-by-layer self-assembly. J. Mater. Chem. B, 3, 8757.
Kuo, W. Y., and Lai, H. M. 2011. Morphological, structural and rheological properties of beta-cyclodextrin based polypseudorotaxane gels. Polymer, 52, 3389-3395.
Laguerre, M., Lecomte, J., and Villeneuve, P. 2007. Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Progress in Lipid Research, 46, 244-282.
Lineback, D. R. 1984. The starch granule–organization and properties. Bakers Dig. 58, 16–21.
Li, Q., Zhou, J., and Zhang, L. Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. 2009. J Polym Sci, Part B: Polym Phys, 47, 1069-1077.
Li, M., Xie, F., Hasjim, J., Wittb, T., Halleyc, P. J., and Gilbert, R. G. 2015. Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline. Carbohydrate Polymers, 117, 262–270.
Liu, J., Yang, R., and Yang, F. 2015. Effect of the starch source on the performance of cationic starches having similar degree of substitution for papermaking using deinked pulp. BioResources, 10(1), 922-931.
Li, X. J., Q, C., J, N., Sun, C., Xiong, L., and Sun, Q. 2015. Mechanical, barrier and morphological properties of starchnanocrystals-reinforced pea starch films. Carbohydrate Polymers, 121, 155–162.
Mastromatteo, M., Conte, A., and Del Nobile, M. A. 2010. Advances in controlled release devices for food packaging applications. Trends in Food Science and Technology, 21, 591-598.
McClements, D. J. and Decker, E. A. 2000. Lipid oxidation in oil-in water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. J. Food Sci., 65, 1270-1282.
Mellinas, C., Valdes, A., Ramos, M., Burgos, N., Garrigos, M. D. C and Jimenez, A. 2016. Active edible films: Current state and future trends. J. APPL. POLYM. SCI., DOI: 10.1002/APP.42631.
Mitsuhiro, S., Hiromitsu, K., Takuji, K., Takuro, M., Hidetaka, I., Tomohiko, S., Noboru, O., Sho, M., Satoshi, O., and Hitoshi, E. 2007. In situ small-angle neutron scattering and rheological measurements of shear-induced gelation. The Journal of Chemical Physics, 127, 144507.
Muller, C. M. O., Laurindo, J. B., and Yamashita, F. 2011. Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products, 33, 605-610.
Muller, C. M. O., Laurindo, J. B., and Yamashita, F. 2012. Composites of thermoplastic starch and nanoclays produced by extrusion and thermopressing. Carbohydrate Polymers, 89, 504-510.
Nekhamanurak, B., Patanathabutr, P., and Hongsriphan, N. 2012. Mechanical properties of hydrophilicity modified CaCO3-poly (lactic acid) nanocomposite. International Journal of Applied Physics and Mathematics, 2(2), 98-103.
Noboru, O., Sho, M., Satoshi, O., and Hitoshi, E. 2007. In situ small-angle neutron scattering and rheological measurements of shear-induced gelation. The Journal of Chemical Physics, 127, 144507.
Norrman, K., Ghanbari-Siahkali, A., and Larsen, N. B. 2005. Studies of spin-coated polymer films. Annu. Rep. Prog. Chem., Sect. C, 101, 174-201.
Oksman, K., Mathew, A.P., Bondeson, D., and Kvien, I. 2006. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos. Sci. Technol., 66, 2776-2784.
Pandey, J. K., Kumar, A. P., Misra, M., Mohanty, A. K., Drzal, L. T., and Singh, R. P. 2005. Recent advances in biodegradable nanocomposites. Journal of Nanoscience and Nanotechnology, 5, 497-526.
Papastergiadis, A., Mubiru, E., Langenhove, H. V., and Meulenaer, B. D. 2012. Malondialdehyde measurement in oxidized foods: evaluation of the spectrophotometric thiobarbituric acid reactive substances (TBARS) test in various foods. J. Agric. Food Chem., 60, 9589-9594.
Park, H., Lee, W., Park, C., Cho, W., and Ha, C. 2003. Environmentally friendly polymer hybrids. Part 1. Mechanical, thermal and barrier properties of thermoplastic starch/clay nanocomposites. Journal of Materials Science, 38, 909-915.
Park, H., Li, X., Jin, C., Park, C., Cho, W., and Ha, C. 2002. Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromolecular Materials and Engineering, 287, 553-558.
Pérez, S., and Bertoft, E. 2010. The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch/Staerke, 62(8), 389-420.
Perry, C., Hebraud, P., Gernigon, V., Brochon, C., Lapp, A., Lindner, P., and Schlatter, G. 2011. Pluronic and beta-cyclodextrin in water: from swollen micelles to self-assembled crystalline platelets. Soft Matter, 7, 3502-3512.
Podmore, I. D., Griffiths, H. R., Herbert, K. E., Mistry, N., Mistry, P., and Lunec, J. 1998. Vitamin C exhibits pro-oxidant properties. NATURE, 392, 559.
Rhim, J. W., Hong, S. I., and Ha, C. S. 2009. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT–Food Science and Technology, 42, 612-617.
Romero-Bastidaa, C.A., Bello-Pérezb, L.A., Velazqueza, G., and Alvarez-Ramirez, J. 2015. Effect of the addition order and amylose content on mechanical, barrier and structural properties of films made with starch and montmorillonite. Carbohydrate Polymers, 127, 195-201.
Russell, P. L. 1988. Gelatinisation of starches of different amylose/amylopectin content. A study of differential scanning calorimetry. Journal of Cereal Science, 6, 133-145.
Salmieri, S., and Lacroix, M. 2006. Physicochemical properties of alginate/ polycaprolactone-based films containing essential oils. J. Agric. Food Chem., 54, 10205-10214.
Shi, A. M., Wang, L. J., Li, D., and Adhikari, B. 2013. Characterization of starch films containing starch nanoparticles Part 1: Physical and mechanical properties. Car-bohydrate Polymers, 96, 593-601.
Shibasaki-Kitakawa, N., Murakami, M., Kubo, M., and Yonemoto, T. 2012. A kinetic model describing antioxidation and prooxidation of β-carotene in the presence of α-tocopherol and ascorbic acid. J Am Oil Chem Soc., 89, 815-824.
Shih, K. C., Li, C. Y., Li, W. H., and Lai, H. M. 2014. Fine structures of self-assembled beta-cyclodextrin/Pluronic in dilute and dense systems: a small angle X-ray scattering study. Softer Matter, 10, 7606-7614.
Shogren, R. L. 1992. Effect of moisture content on the melting and subsequent physical aging of corn starch. Carbohydrate Polymers, 19, 83-90.
Soares, R. M. D., Lima, A. M. F., Oliveira, R. V. B., Pires, A. T. N., and Soldi, V. 2011. Thermal degradation of biodegradable edible films based on xanthan and starches from different sources. Polymer Degradation and Stability, 90, 449-454.
Such, G. K., Johnston, A., and Caruso, F. 2011. Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chem. Soc. Rev., 40, 19.
Suzuki, T., Chiba, A., and Yano, T. 1997. Interpretation of small angle X-ray scattering from starch on the basis of fractals. Carbohydrate Polymers 34: 357-363.
Teodoroa, A. P., Malib, S., Romeroa, N., and Carvalhoa., G. M. 2015. Cassava starch films containing acetylated starch nanoparticles as reinforcement: Physical and mechanical characterization. Carbohydrate Polymers, 126, 9-16.
Tong, W., Song, X., and Gao, C. 2012. Layer-by-layer assembly of microcapsules and their biomedical applications. Chem. Soc. Rev., 41, 6103.
Valero, M., and Dreiss, C. A. 2010. Growth, shrinking, and breaking of Pluronic micelles in the presence of drugs and/or beta-cyclodextrin, a study by small-angle neutron scattering and fluorescence spectroscopy. Langmuir, 26, 10561-10571.
Vargas, A. J., and Burdnure, R. 2016. Hormesis and synergy: pathways and mechanisms of quercetin in cancer prevention and management. Nutrition Reviews, 68(7), 418-428.
Waterschoot, J., Gomand, S. V., Fierens E., and Delcour, J. A. 2015. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch/Stärke, 67, 14–29.
Wood, K.C., Chuang, H.F., Batten, R.D., Lynn, D.M., and Hammond, P.T. 2006. Controlling interlayer diffusion to achieve sustained, multi-agent drug delivery from layer-by-layer thin films. Proc. Natl. Acad. Sci. USA 103, 10207-10212.
Yaacoub, R., Saliba, R., BilaL, N., Khalaf, G., and Birlouez-Aragon, I. 2008. Formation of lipid oxidation and isomerization products during processing of nuts and sesame seeds. 2008. J. Agric. Food Chem., 56, 7082-7090.
Yano, K., Usuki, A., Okada, A. 1997. Synthesis and Properties of Polyimide-Clay Hybrid Films. Journal of Polymer Science Part A: Polymer Chemistry, 35, 2289-2294.
Zhuang, W., Liu, J., Zhang, J. H., Hu Bai Xing, and Shen, J. 2009. Preparation, characterization, and properties of TiO2/PLA nanocomposites by in situ polymerization. Polymer Composites, 13(8), 1074-1080.
Zhuk, I., Jariwala, F., Attygalle, A. B., Wu, Y., Libera, M. R. and. Sukhishvili, S. A. 2014. Self-Defensive Layer-by-Layer Films with Bacteria-Triggered Antibiotic Release. ACS Nano, 8, 773-7745.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49195-
dc.description.abstract本研究之目的為開發一種以澱粉為基質之生物可分解且具抗氧化能力之活性包材。首先以5% Pluronic® F108 (PL F108)及19%zh_TW
dc.description.abstractThis study is aimed to develop a biodegradable active packaging material with antioxidative capability. A polypseudorotaxane (PPR) nanocrystal was first self-assembled with 5% Pluronic® F108 (PL F108) and 19%en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:18:56Z (GMT). No. of bitstreams: 1
ntu-105-R03623028-1.pdf: 4870383 bytes, checksum: 9b20ef9fda62aad991f34a6cd43f38fa (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 I
ABSTRACT III
目錄 V
表目錄 VII
圖目錄 VIII
第一章 前言 1
實驗架構 3
第二章 文獻整理 4
(一) 澱粉 4
1. 澱粉基本性質簡介 4
2. 修飾澱粉 7
(二) 澱粉—生物可分解(BIODEGRADABLE)材料 8
1. 澱粉材料之應用趨勢 8
2. 澱粉膜製作技術 9
2.1 利用小角度X光散射技術觀察澱粉糊液乾燥過程之微細結構變化 11
3. 澱粉奈米複合材料(starch nanocomposite) 12
3.1 奈米複合材料提升機械性質 12
3.2 奈米複合材料提升氣體阻隔性 15
3.3 奈米填充物之種類及應用 18
(三) 生物可分解活性包材(ACTIVE PACKAGE) 20
簡介 20
1. 逐層自主裝(layer-by-layer self-assembly)塗布技術 21
2. 澱粉膜之表面親疏水性及表面張力 23
3. 油脂氧化機制及抗氧化劑(antioxidant) 25
4. 油脂氧化安定性指標(oil stability index, OSI)測定 26
第三章 材料與方法 28
一、材料 28
二、方法 28
(一) 添加PPR澱粉膜之製備及性質分析 28
1. PPR溶液之製備 28
2. 澱粉膜製作流程 29
3. 小角及廣角X光散射(Small- / Wide-angle X-ray scattering, SAXS/WAXS)測定 29
4. 流變(Rehology)性質測定 31
5. 顯微結構測定 31
6. 澱粉膜厚度(Film thickness)測定 31
7. 機械性質(Mechanical properties)測定 32
8. 等溫吸濕曲線(Moisture sorption isotherm) 32
9. 水氣通透性(Water vapor permeability, WVP)測定 33
10. 接觸角(Contact angle)測定 33
(二) 塗布澱粉膜製備及性質分析 34
1. 正電修飾澱粉製備 34
2. 正電澱粉取代度(Degree of substitution, DS)測定 34
3. 負電微乳化系統製備 34
4. 塗布澱粉膜製備 35
5. 澱粉膜塗布效率測定—Vit E塗布量 35
6. 塗布澱粉膜之顯微結構、等溫吸濕曲線及接觸角測定 36
7. 澱粉膜塗布厚度(coating thickness)測定 36
(三) 澱粉膜之應用性測定 36
1. 澱粉膜釋放速率測定 36
2. 油脂儲藏安定性試驗 37
3. Vit E抗氧化活性測試 38
4. 以BHT取代Vit E之油脂氧化安定性試驗 39
(四) 統計分析 40
第四章 結果與討論 41
(一)添加PPR澱粉膜之性質分析 41
1. 小角度X光散射 41
2. 廣角X光散射 46
3. 流變性質 49
4. 顯微結構 50
5. 澱粉膜厚度及機械性質 56
6. 等溫吸濕曲線 58
7. 水氣通透性 58
8. 接觸角測定 61
(二)塗布澱粉膜之性質分析 64
1. 正電澱粉取代度 64
2. 塗布效率測定 64
5. 澱粉膜顯微結構及塗布厚度測定 67
6. 等溫吸濕曲線 72
7. 接觸角測定 74
(三)澱粉膜之應用性測定 77
1. 澱粉膜釋放速率測定 77
2. 油脂儲藏安定性試驗 79
3. 不同濃度之Vit E對大豆油氧化安定性之影響 82
4. 塗布BHT之澱粉膜對油脂儲藏安定性之影響 84
第五章 結論 86
第六章 參考文獻 88
dc.language.isozh-TW
dc.subject準聚輪烷zh_TW
dc.subject活性包材zh_TW
dc.subject生物可分解zh_TW
dc.subject澱粉膜zh_TW
dc.subject油脂氧化安定性zh_TW
dc.subject抗氧化zh_TW
dc.subject逐層自主裝zh_TW
dc.subject檸檬酸zh_TW
dc.subject奈米複合材料zh_TW
dc.subjectnanocompositeen
dc.subjectoil oxidation stabilityen
dc.subjectantioxidationen
dc.subjectself-assemblyen
dc.subjectlayer-by-layeren
dc.subjectbiodegradableen
dc.subjectstarch filmen
dc.subjectactive packageen
dc.subjectpolypsuedorotaxaneen
dc.subjectcitric aciden
dc.title以奈米準聚輪烷結晶及多層膜自主裝塗布技術改善澱粉複合材料性質之研究zh_TW
dc.titleStudy of adapting polypseudorotaxane nanocrystal and layer-by-layer self-assembly coating technique to improve the properties of starch compositeen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張永和(Yung-Ho Chang),邵貽沅(Yi-Yuan Shao)
dc.subject.keyword生物可分解,澱粉膜,活性包材,準聚輪烷,奈米複合材料,檸檬酸,逐層自主裝,抗氧化,油脂氧化安定性,zh_TW
dc.subject.keywordbiodegradable,starch film,active package,polypsuedorotaxane,nanocomposite,citric acid,layer-by-layer,self-assembly,antioxidation,oil oxidation stability,en
dc.relation.page96
dc.identifier.doi10.6342/NTU201603176
dc.rights.note有償授權
dc.date.accepted2016-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
Appears in Collections:農業化學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
4.76 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved