Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49188
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳家揚
dc.contributor.authorYen-Chun Liuen
dc.contributor.author劉彥均zh_TW
dc.date.accessioned2021-06-15T11:18:43Z-
dc.date.available2018-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-20
dc.identifier.citation1. Lien, G.W., T.W. Wen, W.S. Hsieh, K.Y. Wu, C.Y. Chen, and P.C. Chen, Analysis of perfluorinated chemicals in umbilical cord blood by ultra-high performance liquid chromatography/tandem mass spectrometry. J. Chromatogr. B, 2011. 879(9-10): p. 641-6.
2. Meeker, J.D., S. Sathyanarayana, and S.H. Swan, Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos T Roy Soc B, 2009. 364(1526): p. 2097-2113.
3. Pan, C.-G., J.-L. Zhao, Y.-S. Liu, Q.-Q. Zhang, Z.-F. Chen, H.-J. Lai, F.-J. Peng, S.-S. Liu, and G.-G. Ying, Bioaccumulation and risk assessment of per- and polyfluoroalkyl substances in wild freshwater fish from rivers in the Pearl River Delta region, South China. Ecotox Environ Safe, 2014. 107: p. 192-199.
4. Koch, H.M. and A.M. Calafat, Human body burdens of chemicals used in plastic manufacture. Philos Trans R Soc Lond B Biol Sci, 2009. 364(1526): p. 2063-78.
5. Streit, E., C. Schwab, M. Sulyok, K. Naehrer, R. Krska, and G. Schatzmayr, Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins (Basel), 2013. 5(3): p. 504-23.
6. Yusa, V., X. Ye, and A.M. Calafat, Methods for the determination of biomarkers of exposure to emerging pollutants in human specimens. Trends Analyt Chem, 2012. 38: p. 129-142.
7. Haneef, J., M. Shaharyar, A. Husain, M. Rashid, R. Mishra, S. Parveen, N. Ahmed, M. Pal, and D. Kumar, Application of LC–MS/MS for quantitative analysis of glucocorticoids and stimulants in biological fluids. J Pharm Anal, 2013. 3(5): p. 341-348.
8. Taylor, P.J., Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography–electrospray–tandem mass spectrometry. Clin Biochem, 2005. 38(4): p. 328-334.
9. Buck, R.C., J. Franklin, U. Berger, J.M. Conder, I.T. Cousins, P. de Voogt, A.A. Jensen, K. Kannan, S.A. Mabury, and S.P. van Leeuwen, Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag, 2011. 7(4): p. 513-41.
10. Ahrens, L. and M. Bundschuh, Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: a review. Environ Toxicol Chem, 2014. 33(9): p. 1921-9.
11. Lorenzo, M., J. Campo, and Y. Pico, Optimization and comparison of several extraction methods for determining perfluoroalkyl substances in abiotic environmental solid matrices using liquid chromatography-mass spectrometry. Anal Bioana Chem, 2015. 407(19): p. 5767-5781.
12. Scheringer, M., X. Trier, I.T. Cousins, P. de Voogt, T. Fletcher, Z. Wang, and T.F. Webster, Helsingor statement on poly- and perfluorinated alkyl substances (PFASs). Chemosphere, 2014. 114: p. 337-9.
13. Perez, F., M. Nadal, A. Navarro-Ortega, F. Fabrega, J.L. Domingo, D. Barcelo, and M. Farre, Accumulation of perfluoroalkyl substances in human tissues. Environ Int, 2013. 59: p. 354-62.
14. Blum, A., S.A. Balan, M. Scheringer, X. Trier, G. Goldenman, I.T. Cousins, M. Diamond, T. Fletcher, C. Higgins, A.E. Lindeman, G. Peaslee, P. de Voogt, Z. Wang, and R. Weber, The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs). Environ Health Perspect, 2015. 123(5): p. A107-11.
15. Kim, D.H., M.Y. Lee, and J.E. Oh, Perfluorinated compounds in serum and urine samples from children aged 5-13 years in South Korea. Environ Pollut, 2014. 192: p. 171-8.
16. D’Hollander, W., P. de Voogt, W. De Coen, and L. Bervoets, Perfluorinated Substances in Human Food and Other Sources of Human Exposure, in Rev Environ Contam, Vol 208, P. De Voogt, Editor. 2010, Springer New York: New York, NY. p. 179-215.
17. Barbarossa, A., R. Masetti, T. Gazzotti, D. Zama, A. Astolfi, B. Veyrand, A. Pession, and G. Pagliuca, Perfluoroalkyl substances in human milk: A first survey in Italy. Environ Int, 2013. 51: p. 27-30.
18. Ehresman, D.J., J.W. Froehlich, G.W. Olsen, S.C. Chang, and J.L. Butenhoff, Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals. Environ Res, 2007. 103(2): p. 176-84.
19. Wang, Z., I.T. Cousins, M. Scheringer, R.C. Buck, and K. Hungerbühler, Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part II: The remaining pieces of the puzzle. Environ Int, 2014. 69: p. 166-176.
20. Krafft, M.P. and J.G. Riess, Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability—Part one. Chemosphere, 2015. 129: p. 4-19.
21. Wang, Z., I.T. Cousins, M. Scheringer, R.C. Buck, and K. Hungerbühler, Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environ Int, 2014. 70: p. 62-75.
22. Fei, C., J.K. McLaughlin, R.E. Tarone, and J. Olsen, Perfluorinated chemicals and fetal growth: a study within the Danish National Birth Cohort. Environ Health Perspect, 2007. 115(11): p. 1677-82.
23. Esteban, M. and A. Castano, Non-invasive matrices in human biomonitoring: a review. Environ Int, 2009. 35(2): p. 438-49.
24. Li, J., F. Guo, Y. Wang, J. Zhang, Y. Zhong, Y. Zhao, and Y. Wu, Can nail, hair and urine be used for biomonitoring of human exposure to perfluorooctane sulfonate and perfluorooctanoic acid? Environ Int, 2013. 53: p. 47-52.
25. Lau, C., K. Anitole, C. Hodes, D. Lai, A. Pfahles-Hutchens, and J. Seed, Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci, 2007. 99(2): p. 366-94.
26. Jones, P.D., W. Hu, W. De Coen, J.L. Newsted, and J.P. Giesy, Binding of perfluorinated fatty acids to serum proteins. Environ Toxicol Chem, 2003. 22(11): p. 2639-49.
27. Feng, Y.-L., X. Liao, G. Grenier, N. Nguyen, and P. Chan, Determination of 18 phthalate metabolites in human urine using a liquid chromatography-tandem mass spectrometer equipped with a core–shell column for rapid separation. Anal. Methods, 2015. 7(19): p. 8048-8059.
28. Hauser, R. and A. Calafat, PHTHALATES AND HUMAN HEALTH. Occup Environ Med, 2005. 62(11): p. 806-818.
29. Bertelsen, R.J., K.C. Carlsen, A.M. Calafat, J.A. Hoppin, G. Haland, P. Mowinckel, K.H. Carlsen, and M. Lovik, Urinary biomarkers for phthalates associated with asthma in Norwegian children. Environ Health Perspect, 2013. 121(2): p. 251-6.
30. Wittassek, M., H.M. Koch, J. Angerer, and T. Bruning, Assessing exposure to phthalates - the human biomonitoring approach. Mol Nutr Food Res, 2011. 55(1): p. 7-31.
31. Specht, I.O., G. Toft, K.S. Hougaard, C.H. Lindh, V. Lenters, B.A. Jonsson, D. Heederik, A. Giwercman, and J.P. Bonde, Associations between serum phthalates and biomarkers of reproductive function in 589 adult men. Environ Int, 2014. 66: p. 146-56.
32. Caldwell, J.C., DEHP: Genotoxicity and potential carcinogenic mechanisms—A review. Mutat Res Rev Mutat Res, 2012. 751(2): p. 82-157.
33. Hines, E.P., A.M. Calafat, M.J. Silva, P. Mendola, and S.E. Fenton, Concentrations of phthalate metabolites in milk, urine, saliva, and Serum of lactating North Carolina women. Environ Health Perspect, 2009. 117(1): p. 86-92.
34. Kay, V.R., C. Chambers, and W.G. Foster, Reproductive and developmental effects of phthalate diesters in females. Crit Rev Toxicol, 2013. 43(3): p. 200-219.
35. Posnack, N.G., The adverse cardiac effects of Di(2-ethylhexyl)phthalate and Bisphenol A. Cardiovasc Toxicol, 2014. 14(4): p. 339-57.
36. James-Todd, T.M., T. Huang, E.W. Seely, and A.R. Saxena, The association between phthalates and metabolic syndrome: the National Health and Nutrition Examination Survey 2001–2010. Environ Health-glob, 2016. 15: p. 52.
37. Saravanabhavan, G. and J. Murray, Human biological monitoring of diisononyl phthalate and diisodecyl phthalate: a review. J Environ Public Health, 2012. 2012: p. 810501.
38. Frederiksen, H., N. Jorgensen, and A.M. Andersson, Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol, 2010. 34(7): p. 400-10.
39. Frederiksen, H., N.E. Skakkebaek, and A.M. Andersson, Metabolism of phthalates in humans. Mol Nutr Food Res, 2007. 51(7): p. 899-911.
40. Gimeno, P., A.-F. Maggio, C. Bousquet, A. Quoirez, C. Civade, and P.-A. Bonnet, Analytical method for the identification and assay of 12 phthalates in cosmetic products: Application of the ISO 12787 international standard “Cosmetics–Analytical methods–Validation criteria for analytical results using chromatographic techniques”. J. Chromatogr. A, 2012. 1253: p. 144-153.
41. Jeong, J.Y., J.H. Lee, E.Y. Kim, P.G. Kim, and Y.L. Kho, Determination of Phthalate Metabolites in Human Serum and Urine as Biomarkers for Phthalate Exposure Using Column-Switching LC-MS/MS. Saf Health Work, 2011. 2(1): p. 57-64.
42. Gerona, R.R., T.J. Woodruff, C.A. Dickenson, J. Pan, J.M. Schwartz, S. Sen, M.W. Friesen, V.Y. Fujimoto, and P.A. Hunt, Bisphenol-A (BPA), BPA glucuronide, and BPA sulfate in midgestation umbilical cord serum in a northern and central California population. Environ Sci Technol, 2013. 47(21): p. 12477-85.
43. Liao, C. and K. Kannan, Determination of free and conjugated forms of bisphenol A in human urine and serum by liquid chromatography-tandem mass spectrometry. Environ Sci Technol, 2012. 46(9): p. 5003-9.
44. Volkel, W., T. Colnot, G.A. Csanady, J.G. Filser, and W. Dekant, Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chem Res Toxicol, 2002. 15(10): p. 1281-7.
45. Corrales, J., L.A. Kristofco, W.B. Steele, B.S. Yates, C.S. Breed, E.S. Williams, and B.W. Brooks, Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose-Response, 2015. 13(3): p. 1-29.
46. Vandenberg, L.N., R. Hauser, M. Marcus, N. Olea, and W.V. Welshons, Human exposure to bisphenol A (BPA). Reprod Toxicol, 2007. 24(2): p. 139-77.
47. Michałowicz, J., Bisphenol A – Sources, toxicity and biotransformation. Environ Toxicol Phar, 2014. 37(2): p. 738-758.
48. Abia, W.A., B. Warth, M. Sulyok, R. Krska, A. Tchana, P.B. Njobeh, P.C. Turner, C. Kouanfack, M. Eyongetah, M. Dutton, and P.F. Moundipa, Bio-monitoring of mycotoxin exposure in Cameroon using a urinary multi-biomarker approach. Food Chem Toxicol, 2013. 62: p. 927-34.
49. Hussein, H.S. and J.M. Brasel, Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, 2001. 167(2): p. 101-134.
50. Peraica, M., B. Radic, A. Lucic, and M. Pavlovic, Toxic effects of mycotoxins in humans. Bull World Health Organ, 1999. 77(9): p. 754-66.
51. Henry, S.H., F.X. Bosch, and J.C. Bowers, Aflatoxin, hepatitis and worldwide liver cancer risks. Adv Exp Med Biol, 2002. 504: p. 229-33.
52. Turner, P.C., B. Flannery, C. Isitt, M. Ali, and J. Pestka, The role of biomarkers in evaluating human health concerns from fungal contaminants in food. Nutr Res Rev, 2012. 25(1): p. 162-79.
53. Wild, C.P., R. Hasegawa, L. Barraud, S. Chutimataewin, B. Chapot, N. Ito, and R. Montesano, Aflatoxin-albumin adducts: a basis for comparative carcinogenesis between animals and humans. Cancer Epidemiol Biomarkers Prev, 1996. 5(3): p. 179-89.
54. Wild, C.P., Y.Z. Jiang, G. Sabbioni, B. Chapot, and R. Montesano, Evaluation of methods for quantitation of aflatoxin-albumin adducts and their application to human exposure assessment. Cancer Res, 1990. 50(2): p. 245-51.
55. Ali, N., M. Blaszkewicz, M. Manirujjaman, R. Perveen, A. Al Nahid, S. Mahmood, M. Rahman, K. Hossain, and G.H. Degen, Biomonitoring of ochratoxin A in blood plasma and exposure assessment of adult students in Bangladesh. Mol Nutr Food Res, 2014. 58(11): p. 2219-25.
56. Gupta, R.C., Aflatoxins, ochratoxins and citrinin, in Reproductive and Developmental Toxicology. 2011. p. 753-763.
57. Blaszkewicz, M., K. Munoz, and G.H. Degen, Methods for analysis of citrinin in human blood and urine. Arch Toxicol, 2013. 87(6): p. 1087-94.
58. Pinney, S.M., F.M. Biro, G.C. Windham, R.L. Herrick, L. Yaghjyan, A.M. Calafat, P. Succop, H. Sucharew, K.M. Ball, K. Kato, L.H. Kushi, and R. Bornschein, Serum biomarkers of polyfluoroalkyl compound exposure in young girls in Greater Cincinnati and the San Francisco Bay Area, USA. Environ Pollut, 2014. 184: p. 327-34.
59. Krause, J. and R. Schmidt, Bioanalytical Assays LC-MS/MS, in Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays, H.G. Vogel, et al., Editors. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 853-867.
60. Van Eeckhaut, A., K. Lanckmans, S. Sarre, I. Smolders, and Y. Michotte, Validation of bioanalytical LC–MS/MS assays: Evaluation of matrix effects. J. Chromatogr. B, 2009. 877(23): p. 2198-2207.
61. Xu, R.N., L. Fan, M.J. Rieser, and T.A. El-Shourbagy, Recent advances in high-throughput quantitative bioanalysis by LC–MS/MS. J. Pharm. Biomed. Anal., 2007. 44(2): p. 342-355.
62. Owen, L.J. and B.G. Keevil, Supported liquid extraction as an alternative to solid phase extraction for LC-MS/MS aldosterone analysis? Ann Clin Biochem, 2013. 50(Pt 5): p. 489-91.
63. Svanström, C., G.P. Hansson, L.D. Svensson, and C.J. Sennbro, Development and validation of a method using supported liquid extraction for the simultaneous determination of midazolam and 1-hydroxy-midazolam in human plasma by liquid chromatography with tandem mass spectrometry detection. J. Pharm. Biomed. Anal., 2012. 58: p. 71-77.
64. Jiang, H., H. Cao, Y. Zhang, and D.M. Fast, Systematic evaluation of supported liquid extraction in reducing matrix effect and improving extraction efficiency in LC–MS/MS based bioanalysis for 10 model pharmaceutical compounds. J. Chromatogr. B, 2012. 891–892: p. 71-80.
65. Kato, K., M.J. Silva, J.W. Brock, J.A. Reidy, N.A. Malek, C.C. Hodge, H. Nakazawa, L.L. Needham, and D.B. Barr, Quantitative detection of nine phthalate metabolites in human serum using reversed-phase high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. J Anal Toxicol, 2003. 27(5): p. 284-9.
66. Liu, S.-H., Determination of phthalate metabolites, bisphenol A glucuronide, 1-hydroxypyrene glucuronide, perfluorinated chemicals and leukotriene E4 in urine, in Institution of Evironmental Health. 2012, Nationl Taiwan University. p. 1-62.
67. Lee, W.-W., S.-Y. Lee, S.M. Yu, and J. Hong, High Speed Separation of PFCs in Human Serum by C18-Monolithic Column Liquid Chromatography-Tandem Mass Spectrometry. Bull. Korean Chem. Soc., 2012. 33(11): p. 3727-3734.
68. Zhang, Y., S. Beesoon, L. Zhu, and J.W. Martin, Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life. Environ Sci Technol, 2013. 47(18): p. 10619-27.
69. Wu, S., W. Li, T. Mujamdar, T. Smith, M. Bryant, and F.L. Tse, Supported liquid extraction in combination with LC-MS/MS for high-throughput quantitative analysis of hydrocortisone in mouse serum. Biomed Chromatogr, 2010. 24(6): p. 632-8.
70. Ye, L., J. Shi, S. Wan, X. Yang, Y. Wang, J. Zhang, D. Zheng, and Z. Liu, Development and validation of a liquid chromatography-tandem mass spectrometry method for topotecan determination in beagle dog plasma and its application in a bioequivalence study. Biomed Chromatogr, 2013. 27(11): p. 1532-9.
71. Tulipani, S., R. Llorach, M. Urpi-Sarda, and C. Andres-Lacueva, Comparative analysis of sample preparation methods to handle the complexity of the blood fluid metabolome: when less is more. Anal Chem, 2013. 85(1): p. 341-8.
72. Li, F., C. Zhang, J. Chen, Y. Qu, and Q. Zhou. Determination and Elimination of Matrix Effect in Analysis of Perfluorinated Acids Using High Performance Liquid Chromatography-Negative Electrospray Tandem Mass Spectrometry. in 2009 3rd International Conference on Bioinformatics and Biomedical Engineering. 2009.
73. Ediage, E.N., J.D. Di Mavungu, S. Song, A. Wu, C. Van Peteghem, and S. De Saeger, A direct assessment of mycotoxin biomarkers in human urine samples by liquid chromatography tandem mass spectrometry. Anal Chim Acta, 2012. 741: p. 58-69.
74. Perez, F., M. Llorca, M. Farre, and D. Barcelo, Automated analysis of perfluorinated compounds in human hair and urine samples by turbulent flow chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem, 2012. 402(7): p. 2369-78.
75. Hogberg, J., A. Hanberg, M. Berglund, S. Skerfving, M. Remberger, A.M. Calafat, A.F. Filipsson, B. Jansson, N. Johansson, M. Appelgren, and H. Hakansson, Phthalate diesters and their metabolites in human breast milk, blood or serum, and urine as biomarkers of exposure in vulnerable populations. Environ Health Perspect, 2008. 116(3): p. 334-9.
76. Berg, V., T.H. N?st, S. Huber, C. Rylander, S. Hansen, A.S. Veyhe, O.M. Fuskevåg, J.Ø. Odland, and T.M. Sandanger, Maternal serum concentrations of per- and polyfluoroalkyl substances and their predictors in years with reduced production and use. Environ Int, 2014. 69: p. 58-66.
77. Koch, H.M., H.M. Bolt, R. Preuss, and J. Angerer, New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol, 2005. 79(7): p. 367-76.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49188-
dc.description.abstract全氟碳化合物 (PFASs) 與類雌激素物質,包括鄰苯二甲酸酯類 (Phthalates) 及雙酚A等,被廣泛應用於各式消費性產品中。真菌毒素為一群對人體具多重毒性之黴菌二級代謝物,於食物栽種或保存條件不當時,由滋生之真菌產生。這些物質由於具持久性、生物累積性、內分泌干擾性質及致癌性而受到關注。上述物質廣泛流佈於環境中,對人類造成重複且經常性的暴露,因此,藉由生物偵測了解這些物質在一般大眾體內累積量為一值得探討的議題。然而,迄今能於血清中同時檢測上述污染物之分析方法仍相當缺乏。另一方面,在液相層析串聯式質譜的定量分析中,基質效應一直以來都被視為一個棘手的問題,因此,一個適當的樣品前處理方法對於清除基質中的干擾物,進而提高分析效能是相當重要的。本研究開發並比較三種不同的樣品前處理技術,包括:固相萃取、支持性液液萃取,及液液萃取搭配固相萃取(產品名稱:Ostro,後續將以產品名代稱此法),搭配高效能液相層析串聯式質譜儀,以多重離子監測模式獲取質荷比資訊,來檢測血清中十種全氟碳化合物、五種鄰苯二甲酸酯類代謝物、四種真菌毒素及雙酚A代謝物,並以同位素稀釋技術進行定量。黃麴毒素M1與黃麴毒素B1以正離子電灑游離法作為游離源,並利用ACE Excel 2 C18-PFP HPLC管柱於液相層析儀中搭配移動相:(A) 5mM醋酸氨水溶液 (pH = 6.54)、(B)甲醇,進行梯度流析;十種全氟碳化合物、五種鄰苯二甲酸酯類代謝物、雙酚A葡萄糖苷酸、赭麴毒素A及橘黴素以負離子模式之電灑游離法作為游離源,並利用Waters CORTECS UPLC C18管柱,於液相層析儀中搭配移動相: (A)乙腈:水 = 5:95 (v/v), 0.04%乙酸、(B)乙腈:水 = 90:10 (v/v), 0.04%乙酸,進行梯度流析。
  Sirocco蛋白質沉澱盤用於固相萃取前移除血清中之蛋白質,相較於傳統的有機溶劑/離心方法較為省時。固相萃取法最佳化的過程中比較:(1)兩種調節溶劑;(2)五種強度之清洗溶劑;(3)兩種回溶溶劑,以獲取最終處理流程。支持性液液萃取的部分,在測試兩種稀釋緩衝溶劑與五種萃取溶劑後得到最佳流程。Ostro則測試兩種不同衝擊溶液(crash solvent)以得出最佳結果。固相萃取、支持性液液萃取及Ostro三種方法的偵測極限範圍分別為:0.09–4.67 ng/mL、0.19–2.74 ng/mL 以及0.12–2.58 ng/mL。三種方法的基質效應因子如下:固相萃取98–179%、支持性液液萃取67–122%、以及Ostro 81–180%。固相萃取、支持性液液萃取及Ostro三法之萃取效率範圍分別是:3.3–67%、36–95%及26–82%。定量偏差及相對標準偏差多數均低於20%。
  本研究使用臺大醫院新竹分院提供之119位受試者剩餘血清檢體各350微升(IRB編號:104-007-F),應用新開發之三種前處理技術批次分析。其中,8碳以上之全氟碳化合物具高檢出率(>90%);而6碳以下之全氟碳化合物僅於少數樣本中偵測到低濃度。鄰苯二甲酸酯代謝物及雙酚A葡萄糖苷酸在部分樣本中被測得,其中鄰苯二甲酸單乙酯、鄰苯二甲酸單丁酯及雙酚A葡萄糖苷酸之檢出率落在10–20%,較本研究中其他塑化劑代謝物來的高。而真菌毒素在本研究中檢出率相當低;赭麴毒素A在三中方法中具有相對高的檢出率(4.1–8.1%)。
  本研究評估新開發之三種前處理方法之基質效應因子、樣本前處理萃取效率、操作通量、方法靈敏度、方法穩定度及價格等因子。總體而言,Ostro能達到同時淨化基質並維持良好的萃取效率,且較其他兩方法來得快速、簡單、穩定及便宜,為最具成本效益的方法,適用於血液類樣品(全血、血漿、血清)之多重殘留分析。
zh_TW
dc.description.abstractPerfluoroalkyl substances (PFASs) and feminizing compounds including phthalates and bisphenol A (BPA) are widely used in many consumer products. Mycotoxins are a diverse group of secondary fungal metabolites, which possess multiple toxicities to humans. They are concerned because of the persistence, bioaccumulation, interfering with hormone functions, and carcinogenicity. All these compounds are ubiquitous in food and the environment. The general population is exposed to these contaminants continuously; hence, it is crucial to investigate the body burdens of the above compounds in humans by biomonitoring. However, limited methods are available to determine these contaminants together in serum. On the other hand, matrix effect is critical in quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. An appropriate sample preparation that can remove unwanted matrix components is essential to solve this problem. Therefore, this study developed and compared three sample preparation methods, which are solid-phase extraction (SPE), supported liquid-liquid extraction (SLE), and liquid-liquid extraction coupled with solid-phase extraction (LLE+SPE, i.e., the product name: Ostro) to simultaneously determine ten PFASs, five phthalate metabolites, BPA glucuronide (BPA-G) and four mycotoxins in serum using ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) with multiple reaction monitoring (MRM) and quantified by isotope dilution techniques. Aflatoxin M1 and aflatoxin B1 were ionized by positive electrospray ionization mode (ESI+) and were separated on liquid chromatography by an Advanced Chromatography Technologies (ACE) Excel 2 C18-PFP HPLC column with the mobile phases composed of (A) 5-mM ammonium acetate(aq) (pH = 6.54) and (B) methanol; ten PFASs, five phthalate metabolites, BPA-G, ochratoxin A and citrinin were ionized by negative electrospray ionization mode (ESI-) and were separated on a Waters CORTECS UPLC C18 column with mobile phases composed of (A) 0.04% acetic acid in acetonitrile/water = 5:95 (v/v) (pH = 3.45) and (B) 0.04% acetic acid in acetonitrile/water = 90:10 (v/v) (pH = 3.91).
  A Sirocco protein precipitation plate was used to remove the protein in serum before the extracting step of SPE, in which was relatively quick comparing with traditional protein precipitation approach. The optimization of SPE included the tests of two condition solvent, five strengths of wash solvent, and two reconstitution solvents. The optimization of SLE involved the tests of two different buffers and five extraction solvents. Two crash solvent were tested for optimizing Ostro steps. The LODs of SPE, SLE and Ostro ranged from 0.09–4.67 ng/mL, 0.19–2.74 ng/mL and 0.12–2.58 ng/mL, respectively. The matrix effect factors of three assays were as follows: 98–179% of SPE, 67–122% of SLE, and 81–180% of Ostro. The extraction efficiencies of SPE, SLE and Ostro ranged from 3.3–67%, 36–95% and 26–82%, respectively. Most of the quantitative bias and relative standard deviations were below 20%.
  This study applied the three assays to analyze serum samples from 119 human subjects, each with 350 μL of serum. Most long-chain PFASs containing eight or more carbons were highly detected in the samples (>90%); short-chain PFASs containing six or fewer carbons were detected in few samples at low concentrations. Phthalate metabolites and BPA-G were detected in a few samples; monoethyl phthalate (MEP), monobutyl phthalate (MBP) and BPA-G were detected in about 10% to 20% of samples, which were higher than other phthalate metabolites in this study. Four mycotoxins were barely found in samples except for ochratoxin A, which was the most frequently detected among the four with the detection rates from 4.1% to 8.1% in the three assays.
  Matrix effect, extraction efficiency, throughput, detection sensitivity, robustness, and the cost were considered for evaluating the three methods. In overall, Ostro both provided clean extracts and good extraction recoveries on most of the analytes. It was faster, less complex, more robust, and cheaper than SPE and SLE. Thus, Ostro was the most cost-effective one among the three, which would be suitable for multiple-residue analysis of serum samples.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:18:43Z (GMT). No. of bitstreams: 1
ntu-105-R03844001-1.pdf: 2061269 bytes, checksum: 9d01e669ef50d8c77f5667f2d6a2111d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
中文摘要 I
Abstract III
List of figures VIII
List of tables IX
Capter 1. Introduction 1
1.1 Perfluoroalkyl substances (PFASs) 1
1.2 Phthalates 3
1.3 Bisphenol A 6
1.4 Mycotoxins 7
1.5 Bioanalysis methods for PFASs, phthalate metabolites, BPA-G and mycotoxins 8
1.6 Objectives 10
Chapter 2. Methods 13
2.1 Reagents and materials 13
2.2 Sample collection 15
2.3 Sample preparation 15
2.3.1 Solid-phase extraction 16
2.3.2 Supported liquid-liquid extraction 17
2.3.3 Liquid-liquid extraction coupled with solid phase extraction (LLE+SPE) 18
2.4 Instrumental analysis 18
2.5 Methods validation 20
2.5.1 Matrix effect and extraction efficiency 20
2.5.2 Accuracy and precision 20
2.6 Identification, quantification, and data analysis 21
2.7 Quality assurance and quality control 22
Chapter 3. Results and discussions 23
3.1 MS/MS parameter 23
3.2 Chromatography 23
3.3 Sample preparation methods 24
3.3.1 Optimization of solid-phase extraction 24
3.3.2 Optimization of supported liquid-liquid extraction 27
3.3.3 Optimization of liquid-liquid extraction coupled with solid-phase extraction 29
3.4 Method validation 30
3.5 Comparison of three sample preparation methods 33
3.6 Applications to human samples 35
3.6.1 Concentrations in samples analyzed by SPE 35
3.6.2 Concentrations in samples analyzed by SLE 36
3.6.3 Concentrations in samples analyzed by Ostro 37
3.6.4 Comparison of the quantitative results of the three assays 38
Chapter 4. Conclusions 41
References 43
Figures 50
Tables 59
dc.language.isoen
dc.subject磷脂質移除 (Ostro)zh_TW
dc.subject新興汙染物zh_TW
dc.subject生物偵測zh_TW
dc.subject暴露評估zh_TW
dc.subject固相萃取zh_TW
dc.subject支持性液液萃取zh_TW
dc.subjectemerging contaminantsen
dc.subjectexposure assessmenten
dc.subjectbiomonitoringen
dc.subjectphospholipid removal (Ostro)en
dc.subjectsupported liquid-liquid extractionen
dc.subjectsolid-phase extractionen
dc.title比較三種樣本前處理方式並以極致液相層析/串聯式質譜儀檢測血清中全氟碳化合物、類雌激素物質及真菌毒素zh_TW
dc.titleComparison of Three Sample Preparation Methods for Determining Perfluoroalkyl Substances, Feminizing Compounds and Mycotoxins in Serum Using
Ultra-performance Liquid Chromatography/tandem Mass Spectrometry
en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳保中,蔡東湖,郭錦樺
dc.subject.keyword新興汙染物,生物偵測,暴露評估,固相萃取,支持性液液萃取,磷脂質移除 (Ostro),zh_TW
dc.subject.keywordemerging contaminants,biomonitoring,exposure assessment,solid-phase extraction,supported liquid-liquid extraction,phospholipid removal (Ostro),en
dc.relation.page77
dc.identifier.doi10.6342/NTU201603332
dc.rights.note有償授權
dc.date.accepted2016-08-20
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved