Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49169
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈弘俊
dc.contributor.authorYen-Ling Wengen
dc.contributor.author翁雁翎zh_TW
dc.date.accessioned2021-06-15T11:18:06Z-
dc.date.available2019-08-25
dc.date.copyright2016-08-25
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.citation[1] Pawley, J., Handbook of biological confocal microscope:Springer. 2010.
[2] Derjaguin, B. and G.J. Vlasenko, Flow-ultramicroscopic method of determining the number concentration and particle size analysis of aerosols and hydrosols. Journal of Colloid Science, Vol. (17), No. (7), pp. 605-627, 1962.
[3] 魏熙胤 and 牛瑞芳, 流式細胞儀的發展歷史及其原理和應用進展. pp. 8-11, 2006.
[4] Moldavan, A., Photo-electric technique for the counting of microscopical cells. Science, Vol. (80), pp. 188-189, 1934.
[5] Gucker Jr, F.T., C.T. O'Konski, H.B. Pickard, and J.N. Pitts Jr, A Photoelectronic Counter for Colloidal Particles1. Journal of the American Chemical Society, Vol. (69), No. (10), pp. 2422-2431, 1947.
[6] Ferry, R.M., L.E. Farr, and M.G. Hartman, The preparation and measurement of the concentration of dilute bacterial aerosols. Chemical reviews, Vol. (44), No. (2), pp. 389-417, 1949.
[7] Gucker, F.T. and C. O'Konski, Electronic methods of counting aerosol particles. Chemical reviews, Vol. (44), No. (2), pp. 373-388, 1949.
[8] Coulter Wallace H, H.W.R., Apparatus and method for measuring a dividing particle size of a particulate system. ed: US3557352 A, 1971.
[9] Kamentsky, L.A., M.R. Melamed, and H. Derman, Spectrophotometer: new instrument for ultrarapid cell analysis. Science, Vol. (150), No. (3696), pp. 630-631, 1965.
[10] Sweet, R.G., High frequency recording with electrostatically deflected ink jets. Review of Scientific Instruments, Vol. (36), No. (2), pp. 131-136, 1965.
[11] Kamentsky, L.A. and M.R. Melamed, Spectrophotometric cell sorter. Science, Vol. (156), No. (3780), pp. 1364-1365, 1967.
[12] Hulett, H.R., W.A. Bonner, J. Barrett, and L.A. Herzenberg, Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science, Vol. (166), No. (3906), pp. 747-749, 1969.
[13] Van Dilla, M.A., T. Truiullo, P.F. Mullaney, and J. Coultex, Cell microfluorometry: a method for rapid fluorescence measurement. Science, Vol. (163), No. (3872), pp. 1213-1214, 1969.
[14] Manz, A., N. Graber, and H.a. Widmer, Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and actuators B: Chemical, Vol. (1), No. (1), pp. 244-248, 1990.
[15] Xia, Y. and G.M. Whitesides, Soft lithography. Annual review of materials science, Vol. (28), No. (1), pp. 153-184, 1998.
[16] McDonald, J.C. and G.M. Whitesides, Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of chemical research, Vol. (35), No. (7), pp. 491-499, 2002.
[17] F.S.Ligler, J.S.K., The Microflow Cytometer. Pan Stanford, 2010.
[18] Yang, R., D.L. Feeback, and W. Wang, Microfabrication and test of a three-dimensional polymer hydro-focusing unit for flow cytometry applications. Sensors and Actuators A: Physical, Vol. (118), No. (2), pp. 259-267, 2005.
[19] Simonnet, C. and A. Groisman, High-throughput and high-resolution flow cytometry in molded microfluidic devices. Analytical chemistry, Vol. (78), No. (16), pp. 5653-5663, 2006.
[20] Golden, J.P., J.S. Kim, J.S. Erickson, L.R. Hilliard, P.B. Howell, G.P. Anderson, M. Nasir, and F.S. Ligler, Multi-wavelength microflow cytometer using groove-generated sheath flow. Lab on a Chip, Vol. (9), No. (13), pp. 1942-1950, 2009.
[21] Lee, H.-C., H.-H. Hou, R.-J. Yang, C.-H. Lin, and L.-M. Fu, Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing. Microfluidics and nanofluidics, Vol. (11), No. (4), pp. 469-478, 2011.
[22] Mao, X., S.-C.S. Lin, C. Dong, and T.J. Huang, Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab on a Chip, Vol. (9), No. (11), pp. 1583-1589, 2009.
[23] Mao, X., A.A. Nawaz, S.-C.S. Lin, M.I. Lapsley, Y. Zhao, J.P. McCoy, W.S. El-Deiry, and T.J. Huang, An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing. Biomicrofluidics, Vol. (6), No. (2), pp. 024113, 2012.
[24] Lee, M.G., S. Choi, and J.-K. Park, Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device. Lab on a Chip, Vol. (9), No. (21), pp. 3155-3160, 2009.
[25] Di Carlo, D., Inertial microfluidics. Lab on a Chip, Vol. (9), No. (21), pp. 3038-3046, 2009.
[26] Bhagat, A.A.S., S.S. Kuntaegowdanahalli, N. Kaval, C.J. Seliskar, and I. Papautsky, Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomedical microdevices, Vol. (12), No. (2), pp. 187-195, 2010.
[27] Oakey, J., R.W. Applegate Jr, E. Arellano, D.D. Carlo, S.W. Graves, and M. Toner, Particle focusing in staged inertial microfluidic devices for flow cytometry. Analytical chemistry, Vol. (82), No. (9), pp. 3862-3867, 2010.
[28] Goda, K., K. Tsia, and B. Jalali, Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, Vol. (458), No. (7242), pp. 1145-1149, 2009.
[29] Goda, K., A. Ayazi, D.R. Gossett, J. Sadasivam, C.K. Lonappan, E. Sollier, A.M. Fard, S.C. Hur, J. Adam, and C. Murray, High-throughput single-microparticle imaging flow analyzer. Proceedings of the National Academy of Sciences, Vol. (109), No. (29), pp. 11630-11635, 2012.
[30] Lin, S.-C., P.-W. Yen, C.-C. Peng, and Y.-C. Tung, Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing. Lab on a Chip, Vol. (12), No. (17), pp. 3135-3141, 2012.
[31] Shapiro, H.M., Practical flow cytometry. John Wiley & Sons, 2005.
[32] Rowley, T., Columbia University, Flow Cytometry-A Survey and the Basics. [Online]Available:http://www.labome.com/method/Flow-Cytometry-A-Survey-and-the-Basics.html. 2013.
[33] Coons, A.H., H.J. Creech, and R.N. Jones, Immunological properties of an antibody containing a fluorescent group. Experimental Biology and Medicine, Vol. (47), No. (2), pp. 200-202, 1941.
[34] Friedman, H.P., The use of ultraviolet light and fluorescent dyes in the detection of uterine cancer by vaginal smear. American Journal of Obstetrics and Gynecology, Vol. (59), No. (4), pp. 852-859, 1950.
[35] Mellors, R.C. and R. Silver, A microfluorometric scanner for the differential detection of cells: Application to exfoliative cytology. Science, Vol. (114), No. (2962), pp. 356-360, 1951.
[36] Von Bertalanffy, L. and I. Bickis, Identification of cytoplasmic basophilia (ribonucleic acid) by fluorescence microscopy. Journal of Histochemistry & Cytochemistry, Vol. (4), No. (5), pp. 481-493, 1956.
[37] Johnson, R.C., EE Times, Lab-on-a-chip said to perform 1,024 simultaneous tests. [Online]Available:http://www.eetimes.com/document.asp?doc_id=1171478. 2009.
[38] Kotz, K.T., W. Xiao, C. Miller-Graziano, W.-J. Qian, A. Russom, E.A. Warner, L.L. Moldawer, A. De, P.E. Bankey, and B.O. Petritis, Clinical microfluidics for neutrophil genomics and proteomics. Nature medicine, Vol. (16), No. (9), pp. 1042-1047, 2010.
[39] Kartalov, E.P., C. Walker, C.R. Taylor, W.F. Anderson, and A. Scherer, Microfluidic vias enable nested bioarrays and autoregulatory devices in Newtonian fluids. Proceedings of the National Academy of Sciences, Vol. (103), No. (33), pp. 12280-12284, 2006.
[40] Zhang, M., J. Wu, L. Wang, K. Xiao, and W. Wen, A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips. Lab on a Chip, Vol. (10), No. (9), pp. 1199-1203, 2010.
[41] Kung, Y.-C., K.-W. Huang, Y. Yang, Y.-J. Fan, and P.-Y. Chiou, Fabricatiion of 3D microfluidic networks with a hybrid stamp. in Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on, 2013.
[42] Schonbrun, E., C. Rinzler, and K.B. Crozier, Microfabricated water immersion zone plate optical tweezer. Applied Physics Letters, Vol. (92), No. (7), pp. 071112, 2008.
[43] Schonbrun, E., J. Wong, and K. Crozier, Co-and cross-flow extensions in an elliptical optical trap. Physical Review E, Vol. (79), No. (4), pp. 042401, 2009.
[44] Schonbrun, E., N.Y. Winnie, and K.B. Crozier, Scanning microscopy using a short-focal-length Fresnel zone plate. Optics letters, Vol. (34), No. (14), pp. 2228-2230, 2009.
[45] Fan, Y.-J., Development of microoptics integrated microfluidic system for cell analysis. Docter Thesis, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49169-
dc.description.abstract本研究開發一個快速、高通量(high-throughput)、且低價位之新型微米流式細胞儀(micro-fluidic cytometer)。流式細胞儀已有70餘年歷史,但缺點在於目前商轉的細胞儀不但昂貴、體積大、且檢測速度較慢。 爲了達到高通量的生物檢測,我們利用支狀串列微流道(cascade microchannels),將樣本流道分爲 32條平行流道,可使檢測效率提高32倍;但實驗證明此構型會造成檢體在流道中位置不一,增加後端檢測困難。因此,我們再導入三維流體對焦方法改善,我們摒棄一般常用於微米流式細胞儀的幾何及純慣性流(inertial flow)對焦,原因爲幾何對焦有流速限制,無法達到高通量;純慣性流對焦須應用高速流場,細胞在長時間受力的情況下有不良影響,活性生物實驗皆不傾向此法。因此我們設計三維流道,利用檢體本身環境溶液流動對其進行流體對焦,利用一側向流(sheath flow)對檢體進行平面對焦(x-y平面),再以一垂直流進行環狀對焦(y-z平面),可使檢體在通過檢測端時固定位置,以利後端檢測。檢測端有32顆埋入PDMS的微球型透鏡陣列(micro-ball lens array),分別對應到32條支流,形成的短焦距可使系統之N.A.値提升,縮減整體晶片體積。本實驗針對亮度(intensity)一致的螢光小球(flourescent microsphere)和標記螢光的老鼠巨噬細胞(Raw)進行細胞計數,計數方法爲利用激發光激發檢體,再以高速攝影機收集檢體螢光,最後對照片分析檢體通過檢測端時之亮度,以亮度判斷流體對焦程度。 結果顯示本系統可使螢光小球完全對焦,且針對密度爲5xl08 (cell/ml)之Raw可達到每秒140萬顆的高通量。zh_TW
dc.description.abstractIn this thesis, we have successfully developed a novel micro-fluidic cytometer, which has advantages of rapid, high-throughput and low cost. Cytometer has existed in the industry for more than 70 years, but the current cytometers are expensive, large and low efficiency. To reach high-throughput, we made 32 cascade sample channels to achieve 32 times efficiency. However, it will cause biopsy floating around the channel that makes following detection harder, therefore, we apply 3D fluid focusing to solve this problem. Our design is different from geometry cytometer which can not reach high-throughput; and the inertial cytometer which is an unfriendly-environment to cells. Thus, we design 3D channels filled with environmental solution of biopsy to fluid focus, which means that x-y plane focusing by sheath flow and y-z plane focusing by vertical flow encircling the biopsy, circumscribes the position of biopsy for following detection. In order to enhance N.A. of this system, 32 micro-ball lens was embedded under 32 channels, which can shorten the focus length for compressing the volume of chip. We demonstrate highly focusing by counting fluorescent microsphere which has identical intensity, and demonstrate high throughput by counting labeled cells (Raw). We count the biopsy by exciting it by laser and collecting its fluorescence when it passing through micro-ball lens array. Then analyze the intensity of fluorescence which determines the degree of fluid focusing. In summary, the system could absolutely confines fluorescent microsphere in the focusing area, and it could reach 140 million cell/s by detecting Raw cell of 5x108 cell/ml concentration.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:18:06Z (GMT). No. of bitstreams: 1
ntu-105-R03543068-1.pdf: 3565133 bytes, checksum: 1ced9952ed5db1f0cfe6931482d9e2f6 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
Chapter 1 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究方法 3
1.4 論文架構 3
Chapter 2 文獻回顧 4
2.1 流式細胞儀分析技術 4
2.2 微流體流式細胞儀分析技術 5
2.3 檢測系統 9
2.3.1 流體系統 9
2.3.2 光學系統 10
2.3.3 螢光標定技術 14
Chapter 3 晶片設計與量測系統 15
3.1 微流道系統設計與製程 15
3.1.1 微流道晶片設計 15
3.1.2 微流道晶片製程 17
3.2 鑲嵌於PDMS的微球形透鏡 23
3.2.1 製程 24
3.2.2 微球形透鏡的光學特性 25
3.3 量測系統 28
3.4 細胞培養與螢光標定 30
3.4.1 細胞培養 30
3.4.2 螢光標定 32
Chapter 4 實驗結果與討論 34
4.1 三維平行對焦流道檢測 34
4.2 螢光粒子檢測 36
4.2.1 螢光粒子校正 36
4.2.2 單色螢光粒子 36
4.3 細胞檢測 42
Chapter 5 結論與未來展望 44
5.1 結論 44
5.2 未來展望 45
參考文獻 46
dc.language.isozh-TW
dc.title開發三維對焦平行流道於高效能流式細胞儀zh_TW
dc.titleDevelopment of parallel 3D flow focusing channel for high-throughput flow cytometeren
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee翁宗賢,黃榮山
dc.subject.keyword高通量,流式細胞儀,三維對焦,微球形透鏡陣列,支狀串列流道,zh_TW
dc.subject.keywordHigh-throughput,flow cytometer,3D focusing,micro-ball lens array,cascade microchannels,en
dc.relation.page49
dc.identifier.doi10.6342/NTU201602724
dc.rights.note有償授權
dc.date.accepted2016-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved