請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49162完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱奕鵬 | |
| dc.contributor.author | Sheng-Da Ho | en |
| dc.contributor.author | 何昇達 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:17:52Z | - |
| dc.date.available | 2019-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-18 | |
| dc.identifier.citation | [1] Melles Griot, “Optical Coatings,” CVI Melles Griot 2009 Technical Guide , Vol 2, Issue 5, pp. 5.1-5.34, 2009.
[2] R. R. Willey, “Broadband Antireflection Coating Design Performance Estimation,” SVC Conference Proceedings , Vol. 34, pp. 205-208, 1991. [3] Ronald R. Willey, “Predicting Achievable Design Performance of Broadband Antireflection Coatings,” Applied Optics, Vol. 32, No. 28, pp. 5447-5451, 1993. [4] S. I. Park and Y. J. Lee, “Design of Multilayer Antireflection Coatings,” Journal of the Korean Physical Society, Vol. 32, No. 5, pp. 676-680, 1998. [5] Uwe Schallenberg, “Design Principles for Broadband AR Coatings,” SPIE Proceedings , Vol. 7101, 2008. [6] Ronald R. Willey, “Further Guidance for Broadband Antireflection Coating Design,” Applied Optics, Vol. 50, No. 9, pp. C274-C278, 2011. [7] R.R. Willey, “Broadband Antireflection Coating Design Recommendations,” SVC Conference Proceedings , Vol. 47, 2004. [8] A Brief History of Optical Coatings, Zno, [Online], Available : https://mhcocm.wordpress.com/2011/12/28/a-brief-history-of-optical-coatings/ (July 19, 2016). [9] An Exhibit on A Brief History of The Industrialization of Thin Films, AVS Thin Films History, [Online], Available : http://www2.avs.org/historybook/links/tfexh96.htm (July 19, 2016). [10] Anti-Reflective Coated Eyeglasses for Everyone, Darshan Kulkarni, [Online], Available : https://www.lenspick.com/blog/anti-reflective-coated-eyeglasses/ (July 19, 2016). [11] How Solar Cells Work - Components & Operation of Solar Cells, Shiva, [Online], Available : http://solarlove.org/how-solar-cells-work-components-operation-of-solar-cells/ (July 19, 2016). [12] R. W. Wood, “Remarkable Spectrum from A Diffraction Grating,” Philosophical Magazine, Vol. 4 , pp. 396-402, 1902. [13] A. Hessel and A. A. Oliner, “A New Theory of Wood’s Anomalies on Optical Gratings,” Applied Optics, Vol. 10, pp. 1275-1296, 1965. [14] M. Sarrazin and J. P. Vigneron, “Bounded Modes to The Rescue of Optical Transmission,” Europhysics News, Vol. 38, no. 3, pp. 27-31, 2007. [15] D. Shin, “Resonance Properties of Periodic Waveguides and Their Applications,” Ph.D. dissertation, the University of Texas at Arlington, pp. 1-15, 1999. [16] A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant Grating-Waveguide Structures for Visible and Near-Infared Radiation,” Journal of the Optical Society of America A, Vol. 14, no. 11, pp. 2985-2993, 1997. [17] C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photonics Technology Letters, Vol. 16, no. 2, pp. 518-520, 2004. [18] J. S. Ye, Y. Kanamori, F. R. Hu, and K. Hane, “Self-Supported Subwavelength Gratings with A Broad Band of High Reflectance Analyzed by The Rigorous Coupled-Wave Method,” Journal of Modern Optics, Vol. 53, no. 14, pp. 1995-2004, 2006. [19] J. -S. Ye, Y. Kanamori, F. -R. Hu, and K. Hane, “Rigorous Reflectance Performance Analysis of Si3N4 Self-Suspended Subwavelength Gratings,” Optics Communications, Vol. 270, pp. 233-237, 2007. [20] Guided Mode Resonance, Dr. Raymond C. Rumpf, [Online], Available : http://emlab.utep.edu/ee5390em21/Lecture%2011%20--%20Guided%20mode%20resonance.pdf (July 19, 2016). [21] S. S. Wang and R. Magnusson, “Theory and Application of Guided-Mode Resonance Filters,” Applied Optics, Vol. 32, no. 14, pp. 2606-2613, 1993. [22] A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, “Light Modulation with Resonant Grating-Waveguide Structures,” Optics Letters, Vol. 19,no. 19, pp. 1564-1566, 1996. [23] K. J. Lee, R, LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-Layer Guided-Mode Resonance Polarizer with 40-nm Bandwidth,” IEEE Photonics Technology Letters, Vol. 20, no. 22, pp. 1857-1859, 2008. [24] M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A Surface Emitting Laser Incorporating A High-Index-Contrast Subwavelength Grating,” Nature Photonics, Vol. 1, pp. 119-122, 2007. [25] GaSb on Silicon Short-Wave Infrared Integrated Laser Sources, Ruijun Wang, [Online], Available : http://photonics.intec.ugent.be/research/topics.asp?ID=166 (July 19, 2016). [26] Mohammad Jalal Uddin and Robert Magnusson, “Highly Efficient Color Filter Array Using Resonant Si3N4 Gratings,” Optics Express, Vol. 21, Issue 10, pp. 12495-12506, 2013. [27] Mohammad Jalal Uddin, ”Efficient Guided-Mode-Resonant Tunable Color Filters,” IEEE Photonics Technology Letters, Vol. 24, Issue 17, pp. 1552-1554, 2012. [28] Sophocles J. Orfanidis, “Multilayer Structures,” Electromagnetic Waves and Antennas, Rutgers University, pp. 186-240, 2002. [29] Philip W. Baumeister, “Vector Addition of Amplitudes,” Optical Coating Technology, Society of Photo Optical, pp. 2.91-2.95, 2004. [30] HSL and HSV, SharkD, [Online], Available : https://en.wikipedia.org/wiki/HSL_and_HSV (July 19, 2016). [31] Adobe RGB Color Space, Juanjfb, [Online], Available : https://en.wikipedia.org/wiki/Adobe_RGB_color_space (July 19, 2016). [32] Yeong Hwan Ko, Manoj Niraula, Kyu Jin Lee, and Robert Magnusson, “Properties of Wideband Resonant Reflectors Under Fully Conical Light Incidence,” Optics Express, Vol. 24, Issue 5, pp. 4542-4551, 2016. [33] LCDs – Windows on the Digital World, MERCK, [Online], Available : http://www.magazine.emerck/en/culture/LCD/liquid_crystal_displays1.html (July 19, 2016). [34] Solar Radiation and Photosynthetically Active Radiation, Fondriest Environmental, Inc., [Online], Available : http://www.fondriest.com/environmental-measurements/parameters/weather/photosynthetically-active-radiation/ (July 19, 2016). [35] Spectrum (Fluorescent Light Bulb), Arducordermini, [Online], Available : https://plot.ly/~arducordermini/42/spectrum-fluorescent-light-bulb/ (July 19, 2016). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49162 | - |
| dc.description.abstract | 本篇論文以增透膜的特性為基礎,分析具有寬頻寬的多層增透膜之設計方法,再將該結構與波導模態共振濾波器進行結合,設計出能夠在特定波長具有高反射率,且在該波長區段以外的波長之反射率接近為零的濾波器。
在設計增透膜結構的時候,為了使結構能有寬頻寬的低反射率,在結構之中加入了虛設層,以增加增透膜結構低反射波段,並且計算增透膜結構之等效折射率,設定光柵週期。為了防止結構在可見光波段(400nm至700nm)產生複數模態,調整多層膜結構的中心波長與厚度,使結構在可見光波段僅有單模態。為了增加反射頻譜的半高全寬,分析最適合應用於濾光片的多層增透膜結構,使用了上下交錯型的雙層光柵。 在完成增透膜與光柵結構的設計之後,分析入射角與光柵厚度、占空率、位移距離對於反射率造成的影響與原因,並且針對三色光的濾波器進行光柵的調整。最後我們會計算濾波器可達到的色彩飽和度,與現今顯示器所要求的色彩飽和度進行比較。 | zh_TW |
| dc.description.abstract | In this thesis, we are going to design the multilayer anti-reflective coatings with broad bandwidth, combine the multilayer anti-reflective coatings with guided-mode resonant filter, and design the filter which is highly reflective at the center wavelength, but nearly zero reflective at the sideband.
In order to keep low reflectance in broad bandwidth, we add absentee layer into the anti-reflective coatings, then calculate the effective refractive index of the structure and set the period of the gratings. To prevent multiple modes from appearing at visible light (400nm to 700nm,) we adjust the thickness of the structure, so there is only one mode at visible light (400nm to 700nm.) For the purpose of increasing the FWHM (Full width at half maximum) of reflectance, we analyze the structure which is the most suitable of the color filters, and decide to use two layers of gratings, which is staggered to each other. After deciding the structure and parameters of the color filters, we are going to analyze how incident angle, the grating thickness, duty cycle and displacement of the grating affect the reflectance of the color filter, and design three different structures corresponded to primary colors of light. At the end, we will calculate the color saturation of the color filters, and compare them to the standard of saturation of the monitors. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:17:52Z (GMT). No. of bitstreams: 1 ntu-105-R03941008-1.pdf: 19901721 bytes, checksum: 596456a57d7bce5d54b253e5b2b3149d (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 1 中文摘要 2 ABSTRACT 3 目錄 4 圖目錄 6 第一章 簡介 10 1.1 文獻回顧 10 1.1.1 增透膜之結構與應用 10 1.1.2 波導模態共振濾波器 12 1.2 研究動機 16 第二章 基本原理 17 2.1 光柵繞射結構 17 2.2 增透膜之設計原理[28] 20 2.2.1 單層增透膜 22 2.2.2 雙層增透膜 24 2.2.3 附有虛設層之雙層增透膜 25 2.3 向量近似法 26 2.3.1 單層增透膜 26 2.3.2 雙層增透膜 28 2.3.3 附有虛設層之雙層增透膜 29 2.4 色彩飽和度的計算 31 2.4.1 濾光片反射率至CIE 1931 XYZ色彩空間 32 2.4.2 CIE 1931 XYZ色彩空間至CIE 1931 sRGB色彩空間 32 2.4.3 CIE 1931 sRGB色彩空間至HSL色彩空間 33 2.4.4 NTSC制式 35 第三章 結構設計與調整 36 3.1 COMSOL Multiphysics模擬軟體 36 3.2 多層增透膜之設計與分析 37 3.2.1 多層增透膜之材質與厚度 37 3.2.2 以向量近似法分析低反射率區間 38 3.3 光柵濾波器之設計與分析 40 3.3.1 將光柵套用至多層增透膜中 40 3.3.2 單一模態的調整 42 3.3.3 降低洩漏模態的發生 46 3.3.4 增加反射波段寬度 51 第四章 數值模擬與分析 54 4.1 多層增透膜光柵濾波器之模擬數據 54 4.1.1 不同入射角對反射率的影響(行進方向垂直光柵週期) 55 4.1.2 不同入射角對反射率的影響(行進方向平行光柵週期) 61 4.1.3 不同光柵總厚度對反射率與半高全寬的影響 65 4.1.4 兩層不等高光柵層對反射率的影響 68 4.1.5 不同占空比對反射率與半高全寬的影響 72 4.1.6 不同位移距離對反射率與半高全寬的影響 76 4.1.7 TM模態之模擬與考量 80 4.2 決定多層增透膜光柵濾波器之結構參數 82 4.3 色彩飽和度的計算 83 4.3.1 濾波器反射率至CIE 1931 XYZ色彩空間 84 4.3.2 CIE 1931 XYZ色彩空間至CIE 1931 sRGB色彩空間 84 4.3.3 CIE 1931 sRGB色彩空間至HSL色彩空間 85 4.3.4 NTSC制式 85 4.4 針對環境光源進行的調整 86 第五章 結論 87 參考文獻 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 色彩飽和度 | zh_TW |
| dc.subject | 增透膜 | zh_TW |
| dc.subject | 波導模態共振濾波器 | zh_TW |
| dc.subject | 低邊帶 | zh_TW |
| dc.subject | 彩色濾光片 | zh_TW |
| dc.subject | low sideband | en |
| dc.subject | color saturation | en |
| dc.subject | color filter | en |
| dc.subject | anti-reflective coating | en |
| dc.subject | guided-mode resonant filter | en |
| dc.title | 低邊帶之波導模態共振濾光片的設計與模擬 | zh_TW |
| dc.title | Designs and Simulations of Low Sideband Guided-Mode Resonant Color Filters | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王子建,賴志賢 | |
| dc.subject.keyword | 增透膜,波導模態共振濾波器,低邊帶,彩色濾光片,色彩飽和度, | zh_TW |
| dc.subject.keyword | anti-reflective coating,guided-mode resonant filter,low sideband,color filter,color saturation, | en |
| dc.relation.page | 90 | |
| dc.identifier.doi | 10.6342/NTU201603282 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 19.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
