Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49156
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor藍崇文(Chung-Wen Lan)
dc.contributor.authorYu-Cien Wuen
dc.contributor.author吳佑岑zh_TW
dc.date.accessioned2021-06-15T11:17:41Z-
dc.date.available2019-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-18
dc.identifier.citation[1] The Semi International Technology Roadmap for Photovoltaics (Itrpv), (2016).
[2] K. Bothe, R. Sinton, J. Schmidt, Fundamental Boron–Oxygen‐Related Carrier Lifetime Limit in Mono‐and Multicrystalline Silicon, Progress in Photovoltaics: Research and Applications, 13 (2005) 287-296.
[3] 費致傑, 熱退火對太陽能多晶矽影響之研究, 臺灣大學化學工程學研究所學位論文, (2010) 1-62.
[4] C.W. Lan, Czhochralski Silicon Growth for Solar Cells, Ch.2 in Crystal Growth for Solar Cells, Springer-Verlag Berlin Heidelberg, 2009.
[5] T. Schulz-Kuchly, Light-Induced-Degradation Effects in Boron–Phosphorus Compensated N-Type Czochralski Silicon, Applied Physics Letters, 96 (2010) 093505.
[6] D. Macdonald, L. Geerligs, Recombination Activity of Interstitial Iron and Other Transition Metal Point Defects in P-and N-Type Crystalline Silicon, (2004).
[7] D. Macdonald, L.J. Geerligs, Recombination Activity of Interstitial Iron and Other Transition Metal Point Defects in P- and N-Type Crystalline Silicon, Applied Physics Letters, 85 (2004) 4061-4063.
[8] A. Cuevas, R.A. Sinton, N.E. Midkiff, R.M. Swanson, 26-Percent Efficient Point-Junction Concentrator Solar-Cells with a Front Metal Grid, Ieee Electron Device Letters, 11 (1990) 6-8.
[9] M.J.C. Keith R. McIntosh, David D. Smith, William P. Mulligan and Richard M.Swanson, The Choice of Silicon Wafer for the Production of Low-Cost Rear-Contact Solar Cells, in: 3rd World Conference on Photovoltaic Energy
Conversion, Osaka, Japan, 2003.
[10] A. Cuevas, M.J. Kerr, C. Samundsett, F. Ferrazza, G. Coletti, Millisecond Minority Carrier Lifetimes in N-Type Multicrystalline Silicon, Applied Physics Letters, 81 (2002) 4952-4954.
[11] J. Schmidt, K. Bothe, R. Bock, C. Schmiga, R. Krain, R. Brendel, N-Type Silicon–the Better Material Choice for Industrial High-Efficiency Solar Cells, in: 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 2007.
[12] S. Martinuzzi, F. Warchol, Dubois, N. Enjalbert, Influence of Chromium on Minority Carrier Properties in Intentionally Contaminated N-Type Mc-Si Wafers, Materials Science and Engineering B-Advanced Functional Solid-State Materials, 159-60 (2009) 253-255.
[13] 余學功, 肖承全, 楊德仁, 一種摻雜電阻率均勻的n 型直拉硅單晶及其制備方法,浙江大學, 中華人民共和國, 2012.
[14] M. Kronberg, F. Wilson, Secondary Recrystallization in Copper, AIME TRANS, 185 (1949) 501-514.
[15] J. Chen, B. Chen, T. Sekiguchi, M. Fukuzawa, M. Yamada, Correlation between Residual Strain and lectrically Active Grain Boundaries in Multicrystalline Silicon, Applied Physics Letters, 93 (2008) 112105.
[16] G. Stokkan, Y. Hu, Ø. Mj?s, M. Juel, Study of Evolution of Dislocation Clusters in High Performance Multicrystalline Silicon, Solar Energy Materials and Solar Cells, 130 (2014) 679-685.
[17] R.W. Balluffi, Y. Komem, T. Schober, Electron Microscope Studies of Grain Boundary Dislocation Behavior, Surface Science, 31 (1972) 68-103.
[18] Y. Yang, A. Yu, B. Hsu, W. Hsu, A. Yang, C.W. Lan, Development of High‐Performance Multicrystalline Silicon for Photovoltaic Industry, Progress in Photovoltaics: Research and Applications, 23 (2015) 340-351.
[19] D. Zhu, L. Ming, M. Huang, Z. Zhang, X. Huang, Seed-Assisted Growth of High-Quality Multi-Crystalline Silicon in Directional Solidification, Journal of Crystal Growth, 386 (2014) 52-56.
[20] X. Gu, X. Yu, K. Guo, L. Chen, D. Wang, D. Yang, Seed-Assisted Cast Quasi-Single Crystalline Silicon for Photovoltaic Application: Towards High Efficiency and Low Cost Silicon Solar Cells, Solar Energy Materials and Solar Cells, 101 (2012) 95-101.
[21] A. Jouini, D. Ponthenier, H. Lignier, N. Enjalbert, B. Marie, B. Drevet, E. Pihan, C. Cayron, T. Lafford, D. Camel, Improved Multicrystalline Silicon Ingot Crystal Quality through Seed Growth for High Efficiency Solar Cells, Progress in Photovoltaics: Research and Applications, 20 (2012) 735-746.
[22] Y. Miyamura, H. Harada, K. Jiptner, J. Chen, R.R. Prakash, S. Nakano, B. Gao, K.Kakimoto, T. Sekiguchi, Crystal Growth of 50 Cm Square Mono-Like Si by Directional Solidification and Its Characterization, Journal of Crystal Growth, 401 (2014) 133-136.
[23] C. Ding, M. Huang, G. Zhong, L. Ming, X. Huang, A Design of Crucible Susceptor for the Seeds Preservation During a Seeded Directional Solidification Process, Journal of Crystal Growth, 387 (2014) 73-80.
[24] W. Ma, G. Zhong, L. Sun, Q. Yu, X. Huang, L. Liu, Influence of an Insulation Partition on a Seeded Directional Solidification Process for Quasi-Single
Crystalline Silicon Ingot for High-Efficiency Solar Cells, Solar Energy Materials and Solar Cells, 100 (2012) 231-238.
[25] M. Trempa, C. Reimann, J. Friedrich, G. Müller, D. Oriwol, Mono-Crystalline Growth in Directional Solidification of Silicon with Different Orientation and
Splitting of Seed Crystals, Journal of Crystal Growth, 351 (2012) 131-140.
[26] K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga, Control of Grain Boundary Propagation in Mono-Like Si: Utilization of Functional Grain Boundaries, Applied Physics Express, 6 (2013) 025505.
[27] K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga, Mono-Like Silicon Growth Using Functional Grain Boundaries to Limit Area of Multicrystalline Grains, IEEE Journal of Photovoltaics, 4 (2014) 84-87.
[28] N. Stoddard, B. Wu, I. Witting, M.C. Wagener, Y. Park, G.A. Rozgonyi, R. Clark, Casting Single Crystal Silicon: Novel Defect Profiles from Bp Solar, in: Solid State Phenomena, Trans Tech Publ, 2008, pp. 1-8.
[29] M. Trempa, C. Reimann, J. Friedrich, G. Müller, A. Krause, L. Sylla, T. Richter, Defect Formation Induced by Seed-Joints During Directional Solidification of Quasi-Mono-Crystalline Silicon Ingots, Journal of Crystal Growth, 405 (2014) 131-141.
[30] M. Tsoutsouva, V. Oliveira, D. Camel, T.T. Thi, J. Baruchel, B. Marie, T. Lafford, Segregation, Precipitation and Dislocation Generation between Seeds in Directionally Solidified Mono-Like Silicon for Photovoltaic Applications, Journal of Crystal Growth, 401 (2014) 397-403.
[31] M. Trempa, C. Reimann, J. Friedrich, G. Müller, A. Krause, L. Sylla, T. Richter, Influence of Grain Boundaries Intentionally Induced between Seed Plates on the Defect Generation in Quasi‐Mono‐Crystalline Silicon Ingots, Crystal Research and Technology, 50 (2015) 124-132.
[32] D. Hu, S. Yuan, L. He, H. Chen, Y. Wan, X. Yu, D. Yang, Higher Quality Mono-Like Cast Silicon with Induced Grain Boundaries, Solar Energy Materials and Solar Cells, 140 (2015) 121-125.
[33] 李喬, 馬遠, 一種晶粒規則排列的太陽能級多晶硅錠的生產方法, 浙江碧晶科技有限公司, 中華人民共和國, 2012.
[34] I. Takahashi, S. Joonwichien, T. Iwata, N. Usami, Seed Manipulation for Artificially Controlled Defect Technique in New Growth Method for Quasi-Monocrystalline Si Ingot Based on Casting, Applied Physics Express, 8 (2015) 105501.
[35] B. Gao, S. Nakano, K. Kakimoto, Influence of Back-Diffusion of Iron Impurity on Lifetime Distribution near the Seed-Crystal Interface in Seed Cast-Grown Monocrystalline Silicon by Numerical Modeling, Crystal Growth & Design, 12 (2011) 522-525.
[36] M. Kivambe, D.M. Powell, S. Castellanos, M.A. Jensen, A.E. Morishige, K.Nakajima, K. Morishita, R. Murai, T. Buonassisi, Minority-Carrier Lifetime and
Defect Content of N-Type Silicon Grown by the Noncontact Crucible Method,Journal of Crystal Growth, 407 (2014) 31-36.
[37] D. Brandon, The Structure of High-Angle Grain Boundaries, Acta metallurgica, 14 (1966) 1479-1484.
[38] F.S. d'Aragona, Dislocation Etch for (100) Planes in Silicon, Journal of the Electrochemical Society, 119 (1972) 948-951.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49156-
dc.description.abstract在所有鑄造的矽晶中,N 型類單晶矽擁有高效能與低成本的優勢,然而仍需要在長晶中控制晶碇的阻值、單晶比例以及缺陷的生成。本文主要提到單晶比例與缺陷控制的結果。單晶比例控制部分,藉由加強坩堝側壁保溫可獲得微凸的長晶界面,而在晶種外環排列生成的Σ5晶界可有效阻檔從坩堝側壁成核的多晶,結合以上兩者的方法,單晶比例有明顯的提升且頂部單晶比例可達93%。
缺陷控制部分,第一個晶種排列實驗,將兩個(100)晶種堆疊以防止晶種發生過融,並且控制融料界面橫跨兩個晶種的縫隙進而生成0°晶界。第二個晶種排列實驗,將一個(100)晶種切成一塊圓型晶種以及九塊扇形晶種,並將圓型晶種放置中央,且藉由九塊扇形晶種重新排列生成0°到40°的晶界,討論晶界以及三接點(Triple junction)處角度的變化與缺陷密度的發展。
吾人發現不同縫隙尺寸生成的0°晶界皆會形成小角度晶界且伴隨高缺陷密度,然而切口形成的0°晶界(Σ1)因為晶種間沒有角度差所以沒有發展成小角度晶界。10°到40°大角度晶界缺陷密度明顯較0°晶界低,10°晶界(non-Σ)、20°晶界(Σ13a+ Σ37a)與30°晶界(Σ17a)等低對稱性晶界其缺陷密度比高對稱性的40°晶界(Σ5)低,晶種間最佳旋轉角度應該在20°附近。晶片經過去疵與鈍化處理後,除了0°晶界以外,晶片整體少數載子壽命有明顯提升,且少數載子壽命最高可達3 ms以上。吾人更發現三接點上晶界的缺陷密度比遠離三接點的晶界低,但若三接點中存在高對稱性的晶界,則另兩個晶界的缺陷密度會增加。
zh_TW
dc.description.abstractComparing to other type of casting silicon, n-type mono-like casting silicon has advantages of high solar cell efficiency and low cost. But it needs to control the resistivity, monocrystalline area and defect formation during crystal growth. We studied the results of monocrystalline area control and defect control. For monocrystalline area control, we could obtain convex growth interface by improving the insulation of the crucible sidewall. Σ5 GB, which was obtained from arrangement manually at the outer ring of the seed,
successfully suppressed the grains nucleated at the crucible sidewalls. By combining these two conditions, we could increase the monocrystalline region and obtain 93% of monocrystalline ratio on top of the ingot.
For defect control, the first experiment of the seed arrangement was stacking two (100) seeds while keeping the initial growth front across the seed junction. In the second experiment, the seeds were rearranged from the nine sectors cut from a (100) seed, while keeping a round seed at the center, so different tilt angles between seed sectors were from 0 o to 40o. We further observed the evolution of dislocations near grain boundaries (GBs)
and triple junctions (TJs).
Our results revealed that the defects generated easily from the 0° GBs regardless of the seed gaps. However, no significant defects generated near the overcut region (Σ1). On the contrary, the large angle GBs (10° to 40° GBs) had little influence on the defect generation.
10° GB (non-Σ), low symmetrical 20° GB (Σ13a+ Σ37a) and 30° GB (Σ17a) resulted in lower dislocation density compared to high symmetrical 40° GB (Σ5), and the optimum
tilt angle was around 20°. Gettering and passivation was further performed for the wafers. The high lifetime was obtained except near the 0° seed junction, and the highest lifetime was greater than 3 ms. Furthermore, dislocation density of GBs in TJs were lower than
the one away from TJs. The existence of high symmetrical GBs at the TJs resulted in higher dislocation density nearby the rest of GBs at the TJs.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:17:41Z (GMT). No. of bitstreams: 1
ntu-105-R02524073-1.pdf: 10749450 bytes, checksum: cdc9fd6ac14281b389c0fdf447a5073c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 .................................................. I
中文摘要 .............................................. II
Abstract ............................................ III
目錄 .................................................. V
圖目錄 .............................................. VII
表目錄 ............................................. XIII
第一章 緒論 ............................................ 1
1-1 前言................................................1
1-2 研究目的.............................................2
第二章 文獻回顧......................................... 3
2-1 N 型結晶矽在太陽能應用方面的優勢與須控制的參數...........3
2-2 太陽能矽晶中晶界的特性................................6
2-3 類單晶生長的優勢與須控制的參數.........................8
第三章 實驗方法及實驗器材 ............................... 16
3-1 實驗藥品............................................16
3-1-1 矽晶生長使用藥品...................................16
3-1-2 矽晶化學處理藥品...................................17
3-1-3 矽晶清洗處理藥品...................................17
3-2 實驗設備與器材......................................18
3-2-1 類單晶鑄造高溫爐(G1 scale)........................18
3-2-2 類單晶生長前後處理設備.............................20
3-2-3 量測設備..........................................21
3-3 實驗設計............................................26
3-3-1 晶種堆疊實驗......................................26
3-3-2 晶種排列實驗......................................27
3-3-3 雙環晶種實驗......................................28
第四章 研究結果與討論 .................................. 33
4-1 單晶比例改善........................................33
4-2 缺陷控制............................................36
4-2-1 晶種堆疊實驗......................................36
4-2-2 晶種排列實驗......................................39
4-2-2-1 遠離三接點晶界分析...............................39
4-2-2-2 三接點晶界分析….................................59
第五章 結論 ........................................... 73
參考文獻 .............................................. 74
dc.language.isozh-TW
dc.subject太陽能電池zh_TW
dc.subjectN 型矽晶zh_TW
dc.subject類單晶zh_TW
dc.subject缺陷控制zh_TW
dc.subject界面控制zh_TW
dc.subjectdefect controlen
dc.subjectsolar cellen
dc.subjectinterface controlen
dc.subjectN-type siliconen
dc.subjectmono-like siliconen
dc.titleN 型類單晶矽晶體生長的單晶比例改善與缺陷控制zh_TW
dc.titleMonocrystalline Region Improvement and Defects
Control of N-type Mono-like Silicon Ingot Grown by
Directional Solidification
en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王丞浩(Chen-Hao Wang),周明奇(Ming-Chi Chou)
dc.subject.keywordN 型矽晶,類單晶,缺陷控制,界面控制,太陽能電池,zh_TW
dc.subject.keywordN-type silicon,mono-like silicon,defect control,interface control,solar cell,en
dc.relation.page77
dc.identifier.doi10.6342/NTU201603325
dc.rights.note有償授權
dc.date.accepted2016-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
10.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved