請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49153
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭茂坤(Mao-Kuen Kuo) | |
dc.contributor.author | Yun-Cheng Ku | en |
dc.contributor.author | 古運承 | zh_TW |
dc.date.accessioned | 2021-06-15T11:17:35Z | - |
dc.date.available | 2017-08-26 | |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-19 | |
dc.identifier.citation | [1] W. Shockley, and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells”, Journal of Applied Physics 32, 510-519 (1961).
[2] A. Luque, and A. Martı, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels”, Physical Review Letters, 78, 26 (1997). [3] I. Ramiro, A. Martı, and A. Luque, “Review of experimental results related to the operation of intermediate band solar cells.”, IEEE Journal of Photovoltaics, 4.2 736-748 (2014). [4] P. Harrison, “Quantum Wells, Wires and Dots: theoretical and computational physics”, New York: John Wiley&Sons (2000). [5] J. Singh, “Electronic and Optoelectric Properties of Semiconductor Structures”, The Pitt Building, Trumpington Street, Cambridge, United Kungdom (2003). [6] A. Marti, E. Antolin, C. Stanley, C. Farmer, N. Lopez, P. Diaz, E. Canovas, P. Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell”, Physical Review Letters 97, 247701 (2006). [7] S. Tomić, “Intermediate-band solar cells: Influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays”, Physical Review B 82, 195321 (2010). [8] T. Sogabe, T. Kaizu, Y. Okada, and S. Tomić, “Theoretical analysis of GaAs/AlGaAs quantum dots in quantum wire array for intermediate band solar cell.”, Journal of Renewable and Sustainable Energy 6.1: 011206 (2014). [9] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power”, Journal of Applied Physics, 25, 676-677 (1954). [10] J. Mandelkorn, and J. H. Lamneck, “Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells”, 9-th Photovoltaic Specialists Conference, 66-72 (1972). [11] J. Michel, A. Mircea, and E. Fabre, “Computer analysis of backu2010surface field silicon solar cells”, Journal of Applied Physics, 46, 5043-5045 (1975). [12] F. W. Sexton, “Plasma nitride AR coatings for silicon solar cells”, Solar Energy Materials, 7(1), 1-14 (1982). [13] R. Kishore, S. N. Singh, and B. K. Das, “PECVD grown silicon nitride AR coatings on polycrystalline silicon solar cells”, solar energy materials and solar cells, 26, 27-35 (1992). [14] K. Ram, S. N. Singh, and B. K. Das, “Screen printed titanium oxide and PECVD silicon nitride as antireflection coating on silicon solar cells”, Renewable energy, 12(2), 131-135 (1997). [15] U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells”, Applied surface science, 230(1) 364-370 (2004). [16] J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Applied Physics Letters, 73(14), 1991-1993 (1998). [17] P. Campbell, M. A. Green, “Light trapping properties of pyramidally textured surfaces”, Journal of Applied Physics, 62(1), 243-249 (1987). [18] Y. Bai, A. M. Barnett, J. A. Rand, and D. H, Ford, “Light-trapping and back surface structures for polycrystalline silicon solar cells”, Progress in Photovoltaics: Research and Applications, 7(5), 353-361 (1999). [19] H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells”, Progress in Photovoltaics: Research and Applications, 15(5), 415-423 (2007). [20] 楊國輝, “具光線捕捉路徑太陽能電池內部量子效率模擬與分析’, 國立臺灣大學應用力學研究所博士論文 (2010). [21] S. P. Tobin, S. M. Vernon, C. Bajgar, L. M. Geoffroy, C. J. Keavney, M. M. Sanfacon, and V. E. Haven, “Device processing and analysis of high efficiency GaAs cells.”, Solar cells, 24(1-2), 103-115 (1988). [22] S. Adachi, “Physical properties of III-V semiconductor compounds.”, John Wiley & Sons (1992). [23] G. Lètay, M. Hermle, and A. W. Bett, “Simulating single-junction GaAs solar cells including photon recycling.”, Progress in photovoltaics: Research and applications, 14(8) 683-696 (2006). [24] K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells.”, Applied Physics Letters, 93(12), 121904 (2008). [25] G. B. Lush, T. B. Stellwag, A. Keshavarzi, S. Venkatesan, M. R. Melloch, M. S. Lundstrom, R. F. Pierret, S. P. Tobin, and S. M. Vernon, “Correlation of material properties and recombination losses in Al0.2Ga0.8As solar cells”, Solar cells, 27(1-4) 363-372 (1989). [26] A. Al-Bustani, and M. Y. Feteha, “A new double heterojunction AlGaAs-GaAs structure for space solar cells.”, Renewable energy, 5(1-4), 281-284 (1994). [27] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs.”, Applied Physics Letters, 74(5), (1999). [28] A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells.”, Journal of Physics D: Applied Physics, 13(5) 839 (1980). [29] A. Marti, G. L. Araújo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems.”, Solar Energy Materials and Solar Cells, 43(2), 203-222 (1996). [30] J. M. Olson, S. R. Kurtz, A. E. Kibbler, and P. Faine, “A 27.3% efficient Ga0.5In0.5P/GaAs tandem solar cell”, Applied physics letters, 56(7), 623-625 (1990). [31] M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes “Multi-junction III-V solar cells: current status and future potential”, Solar Energy, 79(1), 78-85 (2005). [32] S. P. Bremner, M. Y. Levy, and C. B. Honsberg, “Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method”, Progress in photovoltaics: Research and Applications, 16(3), 225-233 (2008). [33] L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer”, Nature Photonics, 6(3), 180-185 (2012). [34] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency.”, Nature communications, 4, 1446 (2013). [35] S. N. Dahal, S. P. Bremner, and C. B. Honsberg, “Band structure calculation for quantum dot solar cells using kp method”, 33rd IEEE Photovoltaic Specialists Conference, PVSC (2008). [36] A. Luque, and A. Martı, “A metallic intermediate band high efficiency solar cell”, Progress in Photovoltaics: Research and Applications, 9(2), 73-86 (2001). [37] K. Yoshida, Y. Okada, and N. Sano, “Device simulation of intermediate band solar cells: Effects of doping and concentration”, Journal of Applied Physics, 112, 084510 (2012). [38] K. Yoshida, Y. Okada, and N. Sano, “Self-consistent simulation of intermediate band solar cells: Effect of occupation rates on device characteristics”, Applied physics letters, 97(13), 133503 (2010). [39] N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, “Two-photon excitation in an intermediate band solar cell structure”, Applied Physics Letters, 100(17), 172111 (2012). [40] P. G. Linares, E. Lòpez, I. Ramiro, A. Datas, E. Antolin, Y. Shoji, T. Sogabe, Y. Okada, A. Martı, and A. Luque, “Voltage limitation analysis in strain-balanced InAs/GaAsN quantum dot solar cells applied to the intermediate band concept”, Solar Energy Materials and Solar Cells, 132, 178-182 (2015). [41] C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots”, J. Appl. Phys. Lett. 72, 1969 (1998). [42] M. E. Bachlechner, A. Omeltchenko, A. Nakano, R. K. Kalia, P. Vashishta, I. Ebbsjö, A. Madhukar, and P.Shintani, “Mulitimillion-atom molecular dynamics simulation of atomic level stresses in Si (111)/Si3N4(0001) nanopixels”, Appl. Phys. Lett. 72, 1969 (1998). [43] Y. Kikuchi, H. Sugii, and K. Shintani, “Strain profiles in pyramidal quantum dots by mean of atomistic simulation”, J. Appl. Phys. 89, 1191 (2001). [44] A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As / GaAs quantum dots”, Physical Review B 76, 205324 (2007). [45] M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quamtum dots: Strain distribution, optical phonons, and electronic structure”, Physical Review B 52, 11969 (1995). [46] T. Benabbas, P. Francois, Y. Androussi, and A. Lefebvre, “Stress relaxation in highly strained InAs/GaAs structures as studies by finite element analysis and transmission electron microscopy”, J. Appl. Phys. 80, 2763-2767 (1996) [47] T. Benabbas, Y. Androussi, and A. Lefebvre, “A finite-element study of strain field in vertically aligned InAs islands in GaAs”, J. Appl. Phys. 86, 1945 (1999) [48] G. Muralidharan, “Strains in InAs quantum dots embedded in GaAs: A finite element study”, Japanese Journal of Applied Physics. 39, 658 (2000). [49] G. Liu, and S. Jerry, “A finite element study of stress and strain fields of InAs quantum dots embedded in GaAs”, Semiconductor science and technology 17, 630 (2002). [50] M. Kuo, T. Lin, K. Hong, B. Liao, H. Lee, and C. Yu, “Two-step strain analysis of self-assembled InAs/GaAs quantum dots”, Semiconductor science and technology 21, 626 (2006). [51] M. Kuo, T. Lin, B. Liao, and C. Yu, “Strain effects on optical properties of pyramidal InAs/GaAs quamtum dots”, Physica E: Low-dimensional Systems and Nanostructure. 26, 199-2002 (2005). [52] J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems”, Proceedings of Royal Society of London. Series A. Mathematical and Physical Sciences. 241, 376-396 (1957). [53] J. D. Eshelby, “The elastic field outside an ellipsoidal inclusion”, Proceedings of Royal Society of London. Series A. Mathematical and Physical Sciences. 561-569 (1959). [54] D. A. Faux, J. R. Downes, and E. P. OReilly, “A simple method for calculating strain distributions in quantum-wire structures”, Journal of applied physics, 80, 2515-2517 (1996). [55] D. A. Faux, J. R. Downes and E. P. OReilly, “A simple method for calculating strain distributions in quantum dots structures”, Journal of applied physics, 81, 6700 (1997). [56] G. Pearson and D. Faux, “Analytical solutions for strain in pyramidal quantum dots”, Journal of applied physics, 88, 730 (2000). [57] D. Bimberg, M. Grundmann and N. N. Ledentsov, “Quantum dot heterostructures”, West Sussex: John Wiley (1999). [58] R. F. C. Farrow, “Molecular Beam Epitaxy: Applications to Key Materials”, New Jersey: Noyes Publications (1995). [59] H. O. Pierson, “Handbook of Chemical Vapor Deposition: Principles, Technology and Applications, 2nd Ed”, New York: Noyes Publications (1999). [60] J. C. Slater, “A Simplification of Hartree-Fock Method”, Physical Review, 81, 385 (1951). [61] P. W. Langhoff, M. Karplus, and P. Hurst, “Approximations to Hartree—Fock Perturbation Theory”, The Journal of Chemical Physics, 44, 505 (1966). [62] C. Kittel, “Introduction on Solid State Physics”, New York: John Wiley (1995). [63] S. Lee, L. Jönsson, J. W. Wilkins, G. W. Bryant, and G. Klimeck, “Electron-hole corrections in semiconductor quantum dots with tight-binding wave functions “, Physical Review B 63, 195318 (2001). [64] N. Bear, S. Schulz, S. Schumachar, P. Gartner, G. Czycholl, and F. Jahnke, “Optical properties of self-organized wurtzite InN / GaN quantum dots: A combined atomistic tight-binding and full configuration interaction calculation”, Appl. Phys. Lett. 87, 231114 (2005). [65] M. Lorke, J. Seebeek, P. Gartner, F. Jahnke, and S. Schulz, “Excitation-induced energy shifts in the optical gain spectra of InN quantum dots”, Appl. Phys. Lett. 95, 081108 (2009). [66] M. Cardona, N. E. Christensen, and G. Fasol, “Relativistic band structure and spin-orbit splitting of zinc-blende-type semiconductors”, Physical Review B 38, 1806 (1988). [67] S. Tomić, E. P. O’Reilly, P. J. Klar, H. Grüning, W. Heimbrodt, W. M. Chen, and I. A. Buyanova, “Influence of conduction-band nonparabolicity on electron confinement and effective mass in GaNxAs1−x /GaAs quantum wells”, Physical Review B 69, 245305 (2004). [68] K. B. Hong, and M. K. Kuo, “Influence of wetting layers on the electric potentials and optical properties of InGaN quantum dots”, Semicond. Sci. Technol. 25, 115015 (2010). [69] J. Singh, “Quantum mechanics - fundamentals and applications to technology”, New York: John Wiley&Sons (1997). [70] I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys”, Journal of Applied Physics, 89, 5815 (2001). [71] S. de Gironcoli, S. Baroni, and R. Resta, “Piezoelectric properties of III-V semiconductor from first-principles linear-response theory”, Physical review letters, 62, 2853-2856 (1989). [72] H. Landolt, R. Börnstein, K. H. Hellwege, J. Goodenough, M. Schulz, and H. Weiss, “Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology: Crystal and solid state physics”, Semiconductors, 17, Springer (1984). [73] S. H. Wei, and A. Zunger, “Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals”, Applied Physics Letters, 72, 2011 (1998) [74] A. Hospodková, V. Křápek, K. Kuldová, J. Humlíček, E. Hulicius, J. Oswald, J. Pangrác, and J. Zeman, “Photoluminescence and magnetophotoluminescence of vertically stacked InAs/GaAs quantum dot structures”, Physica E: Low-dimensional Systems and Nanostructures, 36, 106-113 (2007). [75] J. Andrzejewski, G. Sek, E. OReilly, A. Fiore, and J. Misiewicz, “Eight-band k∙ p calculations of the composition contrast effect on the linear polarization properties of columnar quantum dots”, Journal of Applied Physics, 107, 073509-073509-12 (2010). [76] D. Gershoni, C. Henry, and G. Baraff, “Calculating the optical properties of multidimensional heterostructures: Application to the modeling of quaternary quantum well lasers”, Quantum Electronics, IEEE Journal of 29, 2433-2450 (1993). [77] S. Tomić, T. Sogabe, and Y. Okada, “In-plane coupling effect on absorption coefficients of InAs/GaAs quantum dots arrays for intermediate band solar cell”, Progress in Photovoltaics: Research and Applications, 23, 546-558 (2015). [78] S. L. Chuang, “Physics of optoelectronic devices”, John Wiley&Sons (1995). [79] J. Nelson, “The Physics of solar cells”, London: Imperial college press (2003). [80] X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations”, Progress in Photovoltaics: Research and Applications, 21, 109-120 (2013) [81] J. C. Rimada, and L. Hernández, “Modelling of ideal AlGaAs quantum well solar cells”, Mircoelectronics Journal, 32, 719-723 (2001). [82] J.C. Rimadaa, L. Hernándezb, J. P. Connollyc, and K. W. J. Barnhamc, “Conversion efficiency enhancement of AlGaAs quantum well solar cells”, Mircoelectronics Journal, 38, 513-518 (2007). [83] J. W. Klos, and M. Krawczyk, “Two-dimensional GaAs/AlGaAs superlattice structures for solar cell applications: ultimate efficiency estimation”, J. Appl. Phys. 106, 093703 (2009). [84] D. Hu, C. C. McPheeters, E. T Wu, and D. M Schaadt, “Improvement of performance of InAs quantum dot solar cell by inserting thin AlAs layers”, Nanoscale Research Letters, 6: 83 (2011). [85] T. Kaizu, Y. Tamura, M. Igarashi, W. Hu, R. Tsukamoto, I. Yamashita, S. Samukawa, and Y. Okada, “Photoluminescence from GaAs nanodisks fabricated by using combination of neutral beam etching and atomic hydrogen-assisted molecular beam epitaxy regrowth”, Appl. Phys. Lett. 101, 113108 (2012). [86] T. Sogabe, T. Kaizu, Y. Okada, and S. Tomić, “Theoretical analysis of GaAs/AlGaAs quantum dots in quantum wire array for intermediate band solar cell”, J. Renewable Sustainable Energy 6, 011206 (2014). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49153 | - |
dc.description.abstract | 本文旨在研究砷化鋁鎵與砷化鎵量子井對砷化銦量子盤及量子線結構的光電性質影響。文中以線彈性力學與k·p理論,配合有限元素法估算量子井厚度、材料濃度對於量子結構的光電性質之效應,並以載子控制方程式計算含有中間帶特性的太陽能電池之轉換效率。
研究發現砷化鋁鎵與砷化鎵量子井對於不同尺寸大小的量子盤之間的耦合強度會有不同的影響。對耦合效應太強的量子盤結構,砷化鋁鎵與砷化鎵量子井的勢能侷限,對於其光電性質影響不大,然而對縱向耦合性較弱的量子盤,量子井的勢能變化將增強電子的在側向的耦合性質,進而影響中間帶至導電帶的吸收係數範圍。而量子井對於砷化銦量子線方向的週期性勢能影響,造成量子線方向上的連續能帶,會因為量子井的變化產生分裂,形成耦合效應強烈的中間帶,使得中間帶至導電帶的吸收係數由量子線與量子井特性組成,促成有較大面積的吸收頻譜。而中間帶的帶寬將會受到量子井的性質耦合至不同的量子線能階中,而產生不同的帶寬變化。 本文目的研究量子結構帶入太陽能電池中,與砷化鎵太陽能電池之比較。含中間帶的量子結構可多利用到低於材料能隙能量的光子,進而轉換成少數載子,相較單能隙的砷化鎵太陽能電池的短路電流15.29 (mA/cm2),其最大的短路電流可以到34.13 (mA/cm2);而轉換效率上,砷化鎵太陽能電池為9.45 %,而量子結構太陽能電池最好的轉換效率為21.64 %。 | zh_TW |
dc.description.abstract | This thesis studies the optical properties of InAs quantum structure, including InAs quantum disk and quantum wire with AlGaAs/GaAs quantum well. A model based on theory of linear elasticity and k p theory is developed with the aid of finite-element method to analyze effects of quantum system band structure and absorption coefficient.
Numerical results show that effects of AlGaAs/GaAs quantum well change with sizes of quantum disk. When the coupling from neighboring quantum disks is strong, effects of AlGaAs/GaAs quantum well is weak and the structure of optical and electrical properties has only slightly change. When the coupling from neighboring quantum disks is weak, the periodic potential is huge barrier for disks coupling effects in the direction of the well. This potential barrier lets elections enhance in side direction coupling. The quantum well is periodic potential for the direction of quantum wire, the potential change let continuous energy state separate intermediate band. This coupling effect is strong and absorption spectrum of intermediate band to conduction band transitions is broad. The quantum structures with intermediate band have abilities to use photons below the material band gap. The best short-circuit current of the intermediate band solar cell (IBSC) structure is 34.13 (mA/cm2) which is much great than the GaAs solar cell 15.29 (mA/cm2). Moreover, the best conversion efficiency of IBSC can be achieved to 21.64 %. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:17:35Z (GMT). No. of bitstreams: 1 ntu-105-R03543012-1.pdf: 7631320 bytes, checksum: 2b84fd0b4d2443d692e2bed4e6eb2fd4 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 圖表目錄 vi 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 文獻回顧 3 1-4 本文研究 5 第二章 數學模型 9 2-1 應變理論 9 2-1-1 初始應變 10 2-1-2 材料組成律 11 2-1-3 平衡方程式與邊界條件 13 2-2 量子結構之光電性質理論分析 14 2-2-1 k p理論 15 2-2-2 含自旋軌道交互作用之漢彌爾頓 17 2-2-3 單載子等效質量理論與6x6漢彌爾頓 18 2-2-4 波函數重疊量與吸收係數 21 2-3 太陽能電池模型 23 2-3-1 載子傳輸控制方程式 23 2-3-2 邊界條件 26 2-3-3 外部量子效率與轉換效率 26 第三章 量子結構之光電性質 32 3-1 量子盤(quantum disk)埋藏於量子井(quantum well)之光電性質 33 3-1-1 能帶分析 33 3-1-2 吸收係數 35 3-2 量子線(quantum wire)穿過量子井(quantum well)之光電性質 36 3-2-1 能帶分析 36 3-2-2 電子機率密度分佈 37 3-2-3 吸收係數 38 第四章 中間帶太陽電池分析 58 4-1 吸收率與外部量子效率 58 4-2 I-V特性曲線與轉換效率 60 第五章 結論與未來展望 71 參考文獻 74 | |
dc.language.iso | zh-TW | |
dc.title | 砷化銦量子盤/線耦合砷化鋁鎵/砷化鎵量子井應用於中間帶太陽能電池 | zh_TW |
dc.title | InAs Quantum Disk/Wire with AlGaAs/GaAs Quantum Well Coupling Effects Applied to the Intermediate Band Solar Cell | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 林資榕(Tzy-Rong Lin) | |
dc.contributor.oralexamcommittee | 馮瑞陽(Jui-Yang Feng),盧廷昌(Tien-Chang Lu) | |
dc.subject.keyword | 量子點,量子線,量子井,有限元素法,中間帶太陽能電池, | zh_TW |
dc.subject.keyword | quantum dot,quantum wire,quantum well,finite element method,intermediate band solar cell, | en |
dc.relation.page | 80 | |
dc.identifier.doi | 10.6342/NTU201602940 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 7.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。