請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49140完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳蕙芬 | |
| dc.contributor.author | Jhe-Ming Wu | en |
| dc.contributor.author | 吳哲銘 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:17:10Z | - |
| dc.date.available | 2019-08-23 | |
| dc.date.copyright | 2016-08-23 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-19 | |
| dc.identifier.citation | 張碧芬, and 袁紹英. (2008). 鄰苯二甲酸酯類(Phthalate Esters)環境荷爾蒙對生物的影響. 中華民國環境保護署環境檢驗所.
劉致昕, and 黃秀美. (2011). 天然尚好更要拒買劣質品. 商業周刊, 1228: 56,58. 傅孝瑜, 黃守潔, 陳玉盆, 闕麗卿, and 施養志. (2013). 聚氯乙烯(PVC)材質醫療器材中鄰苯二甲酸二(2-乙基己基)酯(DEHP)檢驗方法之建立. 食品藥物研究年報. 4, 277-285. Areeba, A., and Riaz, A. (2014). In-gel detection of esterase-like albumin activity: Characterization of esterase-free sera albumin and its putative role as non-invasive biomarker of hepatic fibrosis. Arabian J. Chem., doi:10.1016. Chang, L.-F., and Li, M.-L. (2008). Characterization of a novel thermo- and acido- stable esterase activity from the isolated thermophilic Geobacillus sp. BioFormosa, 43, 95-106. Chen, J.-A., Li, X., Li, J., Cao, J., Qiu, Z., Zhao, Q., Xu, C., and Shu, W. (2007). Degradation of environmental endocrine disruptor di-2-ethylhexyl phthalate by a newly discovered bacterium, Microbacterium sp. strain CQ0110Y. Microbiol Biotechnol, 74, 676–682. Choi, S. D., Chang, M. S., Stuecker, T., Chung, C., Newcombe, D. A., and Venkateswaran, K. (2012). A fosmid cloning strategy for detecting the widest possible spectrum of microbes from the international space station drinking water system. Genomics & Informatics, 10, 249-255. Evans, W. C. (1947). Oxidation of phenol and benzoic acid by some soil bacteria. Biochem. J., 41, 373–382. Gafarov, A. B., and Boronin, A. M. (2008). Treatment of wastewater containing high concentration of DEHP in two sequential continuous flow stirred bioreactros. 4th European Bioremediation Conference. Gerritse, G., Hommes, R. W., and Quax, W. J. (1998). Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain. Environ. Microbiol., 64, 2644-2651. Gillum, N., Karabekian, Z., Swift, L. M., Brown, R. P., Kay, M. W., and Sarvazyan, N. (2009). Clinically relevant concentrations of di (2-ethylhexyl) phthalate (DEHP) uncouple cardiac syncytium. Toxicol. Appl. Pharmacol., 236, 25-38. Guida, N., Laudati, G., Galgani, M., Santopaolo, M., Montuori, P., Triassi, M., Di, R.G., Canzoniero, L.M., and Formisano, L. (2014). Histone deacetylase 4 promotes ubiquitin-dependent proteasomal degradation of Sp3 in SH-SY5Y cells treated with di(2-ethylhexyl)phthalate (DEHP), determining neuronal death. Toxicol. Appl. Pharmacol., 280, 190-198. Hara, H., Stewart, G. R., and Mohn, W. W. (2010). Involvement of a novel ABC transporter and monoalkyl phthalate ester hydrolase in phthalate ester catabolism by Rhodococcus jostii RHA1. Environ. Microbiol., 76, 1516-1523. Hasan, F., Shah, A. A., and Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial. Technology, 39, 235–251. He, Z., Davis, J. K., and Spain, J. C. (1998). Purification, characterization, and sequence analysis of 2-aminomuconic 6-semialdehyde dehydrogenase from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol., 180, 4591-4595. He, Z. X., Xiao, H. L., Tang, L., Min, H., and Lu, Z. M. (2013). Biodegradation of di-n-butyl phthalate by a stable bacterial consortium, HD-1, enriched from activated sludge. Bioresour. Technol., 128, 526–532. Heudorf, U., Mersch-Sundermann, V., and Angerer, J. (2007). Phthalates: toxicology and exposure. Int. J. Hyg. Environ. Health, 210, 623–634. Huertas, M. J., Luque-Almagro, V. M., Martinez-Luque, M., Blasco, R., Moreno-Vivian, C., Castillo, F., and M.D., R. (2006). Cyanide metabolism of Pseudomonas pseudoalcaligenes CECT5344: role of siderophores. Biochem. Soc. Trans., 34, 152-155. Ikonomou, M. G., Kelly, B. C., Blair, J. D., and Gobas, F. A. (2012). An interlaboratory comparison study for the determination of dialkyl phthalate esters in environmental and biological samples. Environ. Toxicol. Chem., 31, 1948-1956. Irvine, R. L., Earley, J. P., Kehrberger, G. J., and Tod Delaney, B. (1993). Bioremediation of soils contaminated with bis-(2-ethylhexyl) phthalate (BEHP) in a soil slurry-sequencing batch reactor. Environ. Prog., 12, 39-44. Iwagami, S. G., Yang, K., and Davies, J. (2000). Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. strain 2065. Environ. Microbiol., 66, 1499-1508. Kamimura, N., Aoyama, T., Yoshida, R., Takahashi, K., Kasai, D., Abe, T., Mase, K., Katayama, Y., Fukuda, M., and Masai, E. (2010). Characterization of the protocatechuate 4,5-cleavage pathway operon in Comamonas sp. strain E6 and discovery of a novel pathway gene. Environ. Microbiol., 76, 8093-8101. Kasai, D., Fujinami, T., Abe. T., Mase, K., Katayama, Y., Fukuda, M., and Masai, E. (2009). Uncovering the protocatechuate 2,3-cleavage pathway genes. J. Bacteriol., 191, 6758-6768. Krishnan, S., Prabhu, Y., and Phale, P. S. (2004). O-phthalic acid, a dead-end product in one of the two pathways of phenanthrene degradation in Pseudomonas sp. strain PP2. Indian J. Biochem. Biophys., 41, 227-232. Krzeslak, J., Gerritse, G., Van Merkerk, R., Cool, R. H., and Quax, W. J. (2008). Lipase expression in Pseudomonas alcaligenes is under the control of a two-component regulatory system. Environ. Microbiol., 75, 1402-1411. Kurien, B. T., and Scofield, R. H. (2012). Extraction of proteins from gels: a brief review. Methods Mol. Biol., 869, 403-405. Latorre, I., Hwang, S., and Montalvo-Rodriguez, R. (2012). Isolation and molecular identification of landfill bacteria capable of growing on di-(2-ethylhexyl) phthalate and deteriorating PVC materials. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 47 2254-2262. Lendenmann, U., and Spain, J. C. (1996). 2-aminophenol 1,6-dioxygenase: a novel aromatic ring cleavage enzyme purified from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol., 178, 6227-6232. Liang, D.-W., Zhang, T., Fang, H. H. P., and He, J. Z. (2008). Phthalates biodegradation in the environment. Microbiol. Biotechnol., 80, 183-192. Lorz, P. M., Towae, F. K., Enke, W., Jäckh, R., Bhargava, N., and Hillesheim, W. (2007). 'Phthalic Acid and Derivatives' in Ullmann's Encyclopedia of Industrial Chemistry. Ullmann's Encyclopedia of Industrial Chemistry, 27, 132. Luo, Z.-H., Wu, Y.-R., Chow, R. K. K., Luo, J.-J., Gu, J.-D., and Vrijmoed, L. L. P. (2012). Purification and characterization of an intracellular esterase from a Fusarium species capable of degrading dimethyl terephthalate. Process Biochem., 47, 687–693. Luo, Z. H., Ding, J.-F., Xu, W., Zheng, T.-L., and Zhong, T.-H. (2015). Purification and characterization of an intracellular esterase from a marine Fusarium fungal species showing phthalate diesterase activity. Int. Biodeterior. Biodegrad., 97, 7–12. Magdouli, S., Daghrir, R., Brar, S. K., Drogui, P., and Tyagi, R. D. (2013). Di 2-ethylhexylphtalate in the aquatic and terrestrial environment: a critical review. J. Environ. Manage., 127, 36-49. Maruyama, K., Akita, K., Naitou, C., Yoshida, M., and Kitamura, T. (2005). Purification and characterization of an esterase hydrolyzing monoalkyl phthalates from Micrococcus sp. YGJ1. J. Biochem., 137, 27-32. Mohanty, S., Jasmine, J., and Mukherji, S. (2013). Practical considerations and challenges involved in surfactant enhanced bioremediation of oil. Biomed Res. Int., 2013, 328608. Nojiri, H., Maeda, K., Sekiguchi, H., Urata, M., Shintani, M., Yoshida, T., . . . Omori, T. (2002). Organization and transcriptional characterization of catechol degradation genes involved in carbazole degradation by Pseudomonas resinovorans strain CA10. Biosci. Biotechnol., Biochem., 66, 897-901. O'Mahony, M. M., Dobson, A. D. W., Barnes, J. D., and Singleton, I. (2006). The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere, 63, 307–314. Peng, Y. H., Chen, Y. J., Chang, Y. J., and Shih, Y. H. (2015). Biodegradation of bisphenol A with diverse microorganisms from river sediment. J. Hazard. Mater., 286, 285-290. Peng, Y. H., Shih, Y. H., Lai, Y. C., Liu, Y. Z., Liu, Y. T., and Lin, N. C. (2014). Degradation of polyurethane by bacterium isolated from soil and assessment of polyurethanolytic activity of a Pseudomonas putida strain. Environ. Sci. Pollu.t Res. Int., 21, 9529-9537. Pietrogrande, M. C., Rossi, D., and Paganetto, G. (2003). Gas chromatographic–mass spectrometric analysis of di(2-ethylhexyl) phthalate and its metabolites in hepatic microsomal incubations. Analytica. Chimica. Acta., 480, 1–10. Rao, L., Xue, Y., Zheng, Y. Y., Lu, J. R., and Ma, Y. H. (2013). A novel alkaliphilic bacillus esterase belongs to the 13th bacterial lipolytic enzyme family. PLOS ONE, 8, e60645. Rhodes, J. E., Adams, W. J., Biddinger, G. R., Robillard, K. A., and Gorsuch, J. W. (1995). Chronic toxicity of 14 phthalate esters to Daphnia magna and Rainbowtrout (Oncorhynchus mykiss). Environ. Toxicol. Chem., 14(11), 1967-1976. Roslev, P., Madsen, P. L., Thyme, J. B., and Henriksen, K. (1998). Degradation of phthalate and di-(2-ethylhexyl)phthalate by indigenous and inoculated microorganisms in sludge-amended soil. Appl. Environ. Microbiol., 64(12), 4711-4719. Rudel, R., and Perovich, L. (2008). Endocrine disrupting chemicals in indoor and outdoor air. Atmos. Environ., 43(1), 170–181. Sarkar, J., Chowdhury, P. P., and Dutta, T. K. (2013). Complete degradation of di-n-octyl phthalate by Gordonia sp. strain Dop5. Chemosphere, 90(10), 2571-2577. Schreiber, A., Fu, F., Yang, O., Wan, E., Gu, L., and LeBlanc, Y. (2011). Increasing Selectivity and Confidence in Detection when Analyzing Phthalates by LC-MS/MS. Food & Environmental. Sepúlveda-Torres, L. C., Rajendran, N., Dybas, M. J., and Criddle, C. S. (1999). Generation and initial characterization of Pseudomonas stutzeri KC mutants with impaired ability to degrade carbon tetrachloride. Arch. Microbiol., 171(6), 424–429. Sharpe, R. M. (1998). Environmental oestrogens and male infertility. Pure Appl. Chemosphere, 70, 1685-1701. Staples, C. A., Peterson, D. R., Parkerton, T. F., and Adams, W. J. (1997). The environmental fate of phthalate esters: a literature review. Chemosphere, 35(4), 667-749. Thangthaeng, N., Sumien, N., Forster, M. J., Shah, R. A., and Yan, L. J. (2011). Nongradient blue native gel analysis of serum proteins and ingel detection of serum esterase activities. J. Chromatogr. B Analyt. Technol. Biomed. Life, 879(5-6), 386–394. Wheelis, M. L., Palleroni, N. J., and Stanier, R. Y. (1967). The metabolism of aromatic acids by Pseudomonas testosteroni and P. acidovorans. Arch. Mikrobiol., 59(1), 302-314. Wu, J., Liao, X., Yu, F., Wei, Z., and Yang, L. (2013). Cloning of a dibutyl phthalate hydrolase gene from Acinetobacter sp. strain M673 and functional analysis of its expression product in Escherichia coli. Microbiol. Biotechnol., 97(6), 2483-2491. Yang, C. F., Wang, C.-C., and Chen, C.-H. (2014). Di-n-butyl phthalate removal by strain Deinococcus sp. R5 in batch reactors. Int. Biodeterior. Biodegrad., 95, 55–60. Yen, K. M., Karl, M. R., Blatt, L. M., Simon, M. J., Winter, R. B., Fausset, P. R., Lu, H.S., Harcourt, A.A., and Chen, K. K. (1991). Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J. Bacteriol., 173(17), 5315–5327. Yi, W., Zhibang, Y., Lili, Z., Zhongquan, S., Lianju, M., Ziwei, T., and Renju, J. (2015). Isolation and identification of dexamethasone sodium phosphate degrading Pseudomonas alcaligenes. J. Basic Microbiol., 55(2), 262-268. Yue, Y., Liu, J., Liu, R., Sun, Y., Li, X., and Fan, J. (2014). The binding affinity of phthalate plasticizers-protein revealed by spectroscopic techniques and molecular modeling. Food Chem. Toxicol., 71, 244-253. Zhang, X.-Y., Fan, X., Qiu, Y.-J., Li, C.-Y., Xing, S., Zheng, Y.-T., and Xu, J.-H. (2014). Newly Identified Thermostable Esterase from Sulfobacillus acidophilus: Properties and Performance in Phthalate Ester Degradation. Environ. Microbiol., 80(22), 6870. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49140 | - |
| dc.description.abstract | 鄰苯二甲酸酯 (Phthalates,PAEs) 為鄰苯二甲酸 (Phthalic acid) 酯化後生成的一類化合物,又統稱為鄰苯二甲基酯類,一般揮發性低,且穩定性高,為無色的黏稠油狀液體,對於水的溶解度極低。而PAEs經常被當作塑化劑 (plasticizers) 使用,塑化劑為塑膠添加物以改良塑膠的特性,能提供塑膠彈性、透明度、耐用性及增加使用壽命等功能,但塑化劑及塑膠製品之間並非共價鍵結合,因此若塑膠經陽光曝曬、高溫加熱或接觸有機溶液,便有機會使塑膠中的塑化劑釋放到環境中,除此之外塑膠老化也會加快塑化劑析出的進程。
在台灣行政院保護署的調查當中,發現台灣河川底泥及魚體所含最大宗的PAE即為DEHP (附錄二)。而在2011年時台灣發生塑化劑食品安全事件,不肖業者將廉價的DEHP當作食品添加劑代替合法的起雲劑添加到食品當中,經研究證明DEHP的毒性要比三聚氰胺毒上3.5至20倍,DEHP被認為是潛在的致癌劑、環境賀爾蒙及代謝干擾物,勢必會嚴重影響民眾的健康,因此解決環境中汙染物DEHP成為一項重要的課題。 本實驗發現產鹼假單孢菌A25 (Pseudomonas alcaligenes A25) 具有降解DEHP的能力,且分解效率佳,以高效液相色譜法分析DEHP的降解曲線,在低濃度 (100 ppm) 的DEHP條件下約24小時即可降解76%的DEHP,在高濃度 (600 ppm) 的DEHP條件下約48小時可以降解87%的DEHP,而經192小時可以降解98%的DEHP。又經實驗測試得知Pseudomonas alcaligenes A25經DEHP的誘導可以產生胞外酵素,該胞外酵素經過三丁酸甘油酯瓊脂培養基及酵素活性膠體染色的測驗中確認具有酯解酵素活性,在酵素活性測試中得知最佳反應溫度為40℃、酸鹼值為8.0,同時測試不同介面活性劑對於此酵素的活性影響。Pseudomonas alcaligenes A25為一菌種可以有效率的降解DEHP,且產生之降解酵素為胞外蛋白質易於大量收集,將來或許可應用於處理環境中的塑化劑汙染物DEHP。 | zh_TW |
| dc.description.abstract | Phthalates, or phthalate esters, are esters of phthalic acid and are with characteristics of general low volatility and high stability, as a colorless viscous oily liquid, very low solubility in water. Phthalates are mainly used as plasticizers, substances added to plastics to increase their flexibility, transparency, durability and longevity. There is no covalent bond between the phthalates and plastics. So if the plastic by exposure to sunlight, high temperature heating or organic solvents, it has the opportunity to make the plasticizers released into the environment. Moreover, plastic aging will accelerate this process. The studies by EPA Taiwan found that DEHP is most abundant phthalate in Taiwan river sediment and fish body (Appendix. 2). In 2011 Taiwan plasticizer food safety incidents occur, unscrupulous industry use cheap DEHP as a food additive instead of a legal Cloudy agent added to food products. The study shows that the DEHP toxicity is more than melamine 3.5 to 20 times. DEHP is considered a potential carcinogen, environmental hormone and metabolic disruptors and is bound to seriously affect the health of the people. Thus, to solve environmental pollutants, DEHP becomes an important issue. Our study found that Pseudomonas alcaligenes A25 have the ability to degrade DEHP with good degradation efficiency. We analyze the degradation rate of DEHP by High performance liquid chromatography. At low concentrations (100 ppm) of DEHP about 24 hours to degrade 76% of DEHP, and at high concentrations (600 ppm) for about 48 hours to degrade 87% of DEHP. The strain A25 could degrade 98% DEHP within 192 hours. We found that strain A25 produce extracellular enzyme by DEHP induction. The extracellular enzyme after tributyrin agar medium and esterase activity staining tests confirmed having esterase activity. The optimal DEHP degradation conditions were 40℃ and pH 8.0. The addition of different nutrient sources and surfactants will affect degradation of DEHP. P. alcaligenes A25 as a newly discovered specie can efficiently degrade DEHP and produces extracellular esterase for DEHP degradation. It has the potential to degrade DEHP, perhaps can be applied to treatment of environmental pollutants DEHP. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:17:10Z (GMT). No. of bitstreams: 1 ntu-105-R03623024-1.pdf: 2777015 bytes, checksum: e894629172b80eb02e903af40c2888b2 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 目錄
摘要 i Abstract iii 目錄 v 圖目錄 viii 表目錄 ix 附錄目錄 x 一、前言 1 1. 研究緣起與動機 1 2. 研究方向 2 二、文獻回顧 3 1. 鄰苯二甲酸酯對於生物體的危害 3 2. 鄰苯二甲酸酯的暴露 4 3. 鄰苯二甲酸酯的毒性機制 5 4. 被認為有害並限制使用的鄰苯二甲酸酯 7 5. 對於使用鄰苯二甲酸酯的法律規範 8 6. 環境賀爾蒙 (Environmental hormones) 11 7. 鄰苯二甲酸二(2-乙基己基)酯 (DEHP) 的性質 12 8. DEHP的分解 14 9. DEHP的降解途徑 19 三、材料與方法 21 1. 藥品與試劑 21 2. 培養基 21 表一、MSM培養基配方 22 3. 使用菌種 22 4-1. 菌種鑑定 23 4-2. PCR 增幅反應 23 4-3. PCR 反應條件 24 4-4. DNA瓊脂膠體 (Agarose gel) 電泳 24 4-5. PCR產物膠體純化 24 4-6. 建立演化樹圖 (Evolutionary tree) 24 5. 菌種培養與最佳生長條件測試 25 6-1. DEHP之降解率分析 25 6-2. 溫度對於降解率之影響 25 6-3. 酸鹼值對於降解率之影響 26 6-4. 添加額外營養源對於降解率之影響 26 6-5. 不同介面活性劑對於降解率之影響 26 6-6. 樣品萃取與前處理 26 6-7. 高效液相色譜法測定DEHP的參數與條件 27 6-8. 檢量線建立 27 6-9. 降解率之計算 27 7-1. 胞外蛋白質萃取 28 7-2. 蛋白質膠體電泳 (SDS-PAGE) 28 7-3. 酯解酵素活性膠體染色 29 7-4. 酯解酵素活性簡易辦別 29 8-1. 酯解酵素活性測試 29 8-2. 溫度對於酵素活性之影響 30 8-3. 酸鹼值對於酵素活性之影響 30 8-4. 不同介面活性劑對於酵素活性的影響 30 9. 利用氣相色譜質譜GC-MS檢測Pseudomonas alcaligenes A25降解DEHP產生的中間產物及分析降解途徑 (pathway)。 31 四、結果 32 1. 菌種的篩選 32 2. 菌種的親緣關係與演化樹圖 32 3. Pseudomonas alcaligenes A25最適生長溫度與酸鹼值 32 4. 利用高效液相色譜法分析DEHP之降解情形 33 5. Pseudomonas alcaligenes A25對於不同濃度DEHP之降解率 33 6. 溫度及酸鹼值對於DEHP降解率的影響 35 7. 添加額外營養源對於DEHP降解率的影響 35 8. 不同介面活性劑對於DEHP降解率的影響 36 9. DEHP誘導Pseudomonas alcaligenes A25生產之胞外酵素特性測試 38 10. 胞外酯解酵素溫度活性測試 38 11. 胞外酯解酵素酸鹼值活性測試 39 12. 介面活性劑對於酯解酵素活性的影響 40 13. 以氣相色譜質譜 (GC-MS) 分析Pseudomonas alcaligenes A25降解DEHP之中間產物並分析降解途徑 (pathway)。 40 五、結論 42 六、綜合討論 44 七、參考文獻 46 圖目錄 圖一、Pseudomonas alcaligenes A25接種於培養基 54 圖二、Pseudomonas alcaligenes A25之演化樹圖 55 圖三、Pseudomonas alcaligenes A25最佳生長條件 56 圖四、利用高效液相色譜法分析DEHP之降解率 57 圖五、Pseudomonas alcaligenes A25對於不同濃度DEHP之降解率 58 圖六、比較不同濃度的DEHP培養基之降解率 60 圖七、溫度及酸鹼值對於DEHP降解率的影響 61 圖八、添加額外營養源對於DEHP降解率的影響 62 圖九、不同介面活性劑對於DEHP降解率的影響 63 圖十、Pseudomonas alcaligenes A25胞外蛋白粗萃液蛋白質電泳 64 圖十一、酯解酵素活性膠體染色 65 圖十二、三丁酸甘油酯瓊脂培養基辨識酯解酵素 66 圖十三、Pseudomonas alcaligenes A25胞外酯解酵素溫度活性測試 67 圖十四、Pseudomonas alcaligenes A25胞外酯解酵素酸鹼值活性測試 68 圖十五、不同的介面活性劑對於胞外酯解酵素的活性影響。 69 圖十六、以GC-MS分析Pseudomonas alcaligenes A25降解之途徑 70 表目錄 表一、MSM培養基配方 23 表二、Pseudomonas alcaligenes A25在不同溫度下的生長速度。 73 表三、Pseudomonas alcaligenes A25在不同酸鹼值下的生長速度 74 表四、對於濃度100 mg/L DEHP的降解曲線及生長曲線。 75 表五、對於濃度200 mg/L DEHP的降解曲線及生長曲線。 76 表六、對於濃度400 mg/L DEHP的降解曲線及生長曲線。 77 表七、對於濃度600 mg/L DEHP的降解曲線及生長曲線。 78 表八、Pseudomonas alcaligenes A25對於不同濃度DEHP的降解率。 79 表九、溫度對於Pseudomonas alcaligenes A25降解DEHP的影響。 80 表十、酸鹼值對於Pseudomonas alcaligenes A25降解DEHP的影響。 81 表十一、添加額外營養源對於降解DEHP的影響。 82 表十二、加入不同介面活性劑對於降解DEHP的影響。 83 表十三、溫度對於胞外酯解酵素的活性影響。 84 表十四、Pseudomonas alcaligenes A25胞外酯解酵素的熱穩定性。 85 表十五、酸鹼值對於胞外酯解酵素的活性影響。 86 表十六、Pseudomonas alcaligenes A25胞外酯解酵素的酸鹼穩定性。 87 表十七、不同的介面活性劑對於胞外酯解酵素的活性影響 88 附錄目錄 附錄一、檢量線表 89 附錄二、台灣行政院環境保護署河川鄰苯二甲酸類汙染物調查。 90 附錄三、Pseudomonas alcaligenes A25之16S rRNA部分序列 91 附錄四、Strain A25與Strain CB-7之16S rRNA序列比對。 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 酵素活性測試 | zh_TW |
| dc.subject | 鄰苯二甲酸二(2-乙基己基)酯 | zh_TW |
| dc.subject | 產鹼假單孢菌 | zh_TW |
| dc.subject | 降解率 | zh_TW |
| dc.subject | 胞外酯解酵素 | zh_TW |
| dc.subject | Degradation rate | en |
| dc.subject | enzyme activity test | en |
| dc.subject | Extracellular esterase | en |
| dc.subject | DEHP | en |
| dc.subject | Pseudomonas alcaligenes A25 | en |
| dc.title | 產鹼假單孢菌A25分解鄰苯二甲酸二酯(DEHP)之研究及其胞外酯解酵素分析 | zh_TW |
| dc.title | The study of DEHP degradation by Pseudomonas alcaligenes A25 and analysis of its extracellular esterase. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐駿森,陳建德,李永安 | |
| dc.subject.keyword | 鄰苯二甲酸二(2-乙基己基)酯,產鹼假單孢菌,降解率,胞外酯解酵素,酵素活性測試, | zh_TW |
| dc.subject.keyword | DEHP,Pseudomonas alcaligenes A25,Degradation rate,Extracellular esterase,enzyme activity test, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU201603095 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
