請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49138完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志宏(Jyh-Horng Chen) | |
| dc.contributor.author | Po-Jung Sung | en |
| dc.contributor.author | 宋柏融 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:17:06Z | - |
| dc.date.available | 2019-08-31 | |
| dc.date.copyright | 2016-08-31 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-19 | |
| dc.identifier.citation | 1. Ford, J.C., et al., A method for in vivo high resolution MRI of rat spinal cord injury. Magnetic resonance in medicine, 1994. 31(2): p. 218-223.
2. Falconer, J.C., et al., Quantitative MRI of spinal cord injury in a rat model. Magnetic resonance in medicine, 1994. 32(4): p. 484-491. 3. Zhao, F., et al., BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation. Neuroimage, 2008. 40(1): p. 133-47. 4. Zhao, F., et al., Pain fMRI in rat cervical spinal cord: an echo planar imaging evaluation of sensitivity of BOLD and blood volume-weighted fMRI. Neuroimage, 2009. 44(2): p. 349-62. 5. Basser, et al., MR diffusion tensor spectroscopy and imaging. Biophysical journal, 1994. 66(1): p. 259. 6. Kim, J.H., et al., Noninvasive diffusion tensor imaging of evolving white matter pathology in a mouse model of acute spinal cord injury. Magn Reson Med, 2007. 58(2): p. 253-60. 7. Nevo, U., et al., Diffusion anisotropy MRI for quantitative assessment of recovery in injured rat spinal cord. Magnetic resonance in medicine, 2001. 45(1): p. 1-9. 8. Biswal, B., et al., Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic resonance in medicine, 1995. 34(4): p. 537-541. 9. Gareis, D., et al., Mouse MRI using phased-array coils. NMR Biomed, 2007. 20(3): p. 326-34. 10. Yung, A.C. and P. Kozlowski, Signal-to-noise ratio comparison of phased-array vs. implantable coil for rat spinal cord MRI. Magn Reson Imaging, 2007. 25(8): p. 1215-21. 11. Sandner, B., et al., In vivo high-resolution imaging of the injured rat spinal cord using a 3.0T clinical MR scanner. J Magn Reson Imaging, 2009. 29(3): p. 725-30. 12. Mogatadakala, K.V., J.A. Bankson, and P.A. Narayana, Three-element phased-array coil for imaging of rat spinal cord at 7T. Magn Reson Med, 2008. 60(6): p. 1498-505. 13. Woytasik, M., et al., Characterization of flexible RF microcoils dedicated to local MRI. Microsystem Technologies, 2006. 13(11-12): p. 1575-1580. 14. Misic, G.J. and E.D. Reid, Anatomically conformal quadrature mri surface coil, in U.S. Patent and Trademark Office. 1993: Washington, DC, USA. 15. Lu, D., Flexible RF coils for MRI system, in U.S. Patent and Trademark Office. 1996: Washington, DC. 16. Nordmeyer-Massner, J.A., N. De Zanche, and K.P. Pruessmann, Mechanically adjustable coil array for wrist MRI. Magn Reson Med, 2009. 61(2): p. 429-38. 17. Nordmeyer-Massner, J.A., N. De Zanche, and K.P. Pruessmann, Stretchable coil arrays: application to knee imaging under varying flexion angles. Magn Reson Med, 2012. 67(3): p. 872-9. 18. Brown, R., et al., A flexible nested sodium and proton coil array with wideband matching for knee cartilage MRI at 3T. Magn Reson Med, 2015. 19. Deppe, M.H., et al., A flexible 32-channel receive array combined with a homogeneous transmit coil for human lung imaging with hyperpolarized 3He at 1.5 T. Magn Reson Med, 2011. 66(6): p. 1788-97. 20. Hardy, C.J., et al., 128-channel body MRI with a flexible high-density receiver-coil array. J Magn Reson Imaging, 2008. 28(5): p. 1219-25. 21. Zhang, T., et al., A semiflexible 64-channel receive-only phased array for pediatric body MRI at 3T. Magn Reson Med, 2015. 22. Wu, B., et al., Flexible transceiver array for ultrahigh field human MR imaging. Magn Reson Med, 2012. 68(4): p. 1332-8. 23. Hashemi, R.H., W.G. Bradley, and C.J. Lisanti, MRI: the basics. 2012: Lippincott Williams & Wilkins. 24. Vaughan, J.T. and J.R. Griffiths, RF coils for MRI. 2012: John Wiley & Sons. 25. Magnetic Field of a Current Loop using Ampère's Law. Available from: http://physics.stackexchange.com/questions/160513/magnetic-field-of-a-current-loop-using-amp%C3%A8res-law. 26. Roemer, P.B., et al., The NMR phased array. Magn Reson Med, 1990. 16(2): p. 192-225. 27. Pozar, D.M., Microwave enigneering. 2009: John Wiley & Sons. 28. Mispelter, J., M. Lupu, and A. Briguet, NMR probeheads for biophysical and biomedical experiments: theoretical principles & practical guidelines. 2006: Imperial College Press. 29. Neamen, D., Semiconductor physics and devices. 2002: McGraw-Hill, Inc. 30. Lee, T.H., The design of CMOS radio-frequency integrated circuits. 2003. 31. Hoult, D.I. and R.E. Richards., The signal-to-noise ratio of the nuclear magnetic resonance experiment. Journal of Magnetic Resonance, 1976. 24(1): p. 71-85. 32. 劉彥良, 以高溫超導射頻線圈平台於7T磁場進行大鼠腦部功能性磁振造影之研究. 2012, 臺灣大學電機工程學研究所學位論文. p. 1-78. 33. Wosik, J., Xie, et al., Superconducting single and phased-array probes for clinical and research MRI. Applied Superconductivity, IEEE Transactions on,, 2003. 13(2): p. 1050-1055. 34. 林漢庭, 磁共振陣列線圈之去耦合設計及生醫影像應用之研究. 2007, 臺灣大學電機工程學研究所學位論文. p. 1-84. 35. Gonzalez, G., Microwave transistor amplifiers: analysis and design. Vol. 61. 1984, Englewood Cliffs: NJ: Prentice-Hall. 36. Dodd, S.J., et al., Modular Preamplifier Design and Application to Animal Imaging at 7 and 11.7T, in Proc. Intl. Soc. Mag. Reson. Med. 2009. 37. Fukui, H., Design of microwave GaAs MESFET's for broad-band low-noise amplifiers. IEEE Transactions on Microwave Thoery and Techniques, 1979. 27(7): p. 643-650. 38. Keysight Technologies, A.N., Noise Figure Measurement Accuracy-The Y-factor method. 2014. 39. Possanzini, C. and M. Boutelje. Influence of magnetic field on preamplifiers using GaAs FET technology. in In Proceedings of the 16th Annual Meeting of ISMRM. 2008. Toronto, Canada. 40. Reykowski, A., S.M. Wright, and J.R. Porter, Design of matching networks for low noise preamplifiers. Magn Reson Med, 1995. 33(6): p. 848-852. 41. Tobgay, S., Novel concepts for RF surface coils with integrated receivers. 2004, Worchester Polytechnic Institute. 42. SKELETAL SYSTEM. Available from: http://biology.kenyon.edu/courses/biol10/110pdfs/8skeleton.pdf. 43. Hayes, C.E. and P.B. Roemer, Noise correlations in data simultaneously acquired from multiple surface coil arrays. Magnetic resonance in medicine, 1990. 16(2): p. 181-191. 44. Ji, J.X., J.B. Son, and S.D. Rane, PULSAR: A Matlab toolbox for parallel magnetic resonance imaging using array coils and multiple channel receivers. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 2007. 31B(1): p. 24-36. 45. Tuch, D.S., et al., High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med, 2002. 48(4): p. 577-82. 46. Wedeen, V.J., et al., Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med, 2005. 54(6): p. 1377-86. 47. Anderson, A.W., Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magn Reson Med, 2005. 54(5): p. 1194-206. 48. Mori, S. and P.C. van Zijl, Fiber tracking: principles and strategies - a technical review. NMR Biomed, 2002. 15(7-8): p. 468-80. 49. Lazar, M., et al., White matter tractography using diffusion tensor deflection. Hum Brain Mapp, 2003. 18(4): p. 306-21. 50. Parker, G.J., C.A. Wheeler-Kingshott, and G.J. Barker, Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. Medical Imaging, IEEE Transactions on, 2002. 21(5): p. 505-512. 51. DSI Studio. Available from: http://dsi-studio.labsolver.org. 52. Lin, C.-P., et al., Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms. NeuroImage, 2003. 19(3): p. 482-495. 53. Wu, E.L., J.H. Chen, and T.D. Chiueh, Wideband MRI Theoretical analysis and its applications, in In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. 2010. p. 5681-5684. 54. Huang, Y.A., et al. W= 2 Acceleration Single carrier Wideband MRI Technique and Blur Mitigation Method. in Mag. Reson. Med. 2013. 55. Ogawa, S., et al., Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 1990. 87(24): p. 9868-9872. 56. Stroman, P.W., Magnetic Resonance Imaging of Neuronal Function in the Spinal Cord Spinal fMRI. Clinical medicine & research, 2005. 3(3): p. 146-156. 57. Zhao, F., et al., fMRI investigation of the effect of local and systemic lidocaine on noxious electrical stimulation-induced activation in spinal cord. Pain, 2009. 145(1-2): p. 110-9. 58. Malisza, K.L., et al., Functional MRI of the rat lumbar spinal cord involving painful stimulation and the effect of peripheral joint mobilization. J Magn Reson Imaging, 2003. 18(2): p. 152-9. 59. Lawrence, J., et al., Correlation of functional activation in the rat spinal cord with neuronal activation detected by immunohistochemistry. Neuroimage, 2004. 22(4): p. 1802-7. 60. Malisza, K.L. and P.W. Stroman, Functional imaging of the rat cervical spinal cord. J Magn Reson Imaging, 2002. 16(5): p. 553-8. 61. Majcher, K., et al., Simultaneous functional magnetic resonance imaging in the rat spinal cord and brain. Exp Neurol, 2006. 197(2): p. 458-64. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49138 | - |
| dc.description.abstract | 磁振造影技術目前已廣泛應用於中樞神經系統的研究中,如解剖影像及擴散張量影像技術等。然而,由於大鼠的頸椎過深,目前商用的磁振造影線圈仍無法提供足夠的影像訊雜比,此減少了磁共振影像於腦脊髓區域研究之可行性。因此,本研究旨在設計與製作一以大鼠中樞神經系統為應用導向之可撓式陣列線圈平台,藉由提昇影像品質來促進磁振造影於腦脊髓之深入研究與探討。
首先,本研究針對大鼠腦脊髓形狀設計並製作了一四通道可撓式陣列線圈。其中,本研究利用幾何重疊與自製的低輸入阻抗前置放大器來降低線圈間之耦合影響。接著,仿體與大鼠之磁共振解剖影像用以評估及驗證此自製線圈之品質。最後,我們將此線圈應用於大鼠腦脊髓之擴散張量影像與神經纖維追蹤影像。 相較於傳統之平面式線圈,可撓式陣列線圈分別可以提供1.3倍與1.45倍的訊雜比增益於仿體與大鼠頸椎之解剖影像實驗中,也同時大幅提昇了脊髓灰白質間的對比雜訊比。此外,更結合寬頻磁振造影技術,以獲得加速11倍的大鼠三維解剖影像及高解析度擴散權重影像。在擴散張量影像的再現性實驗中,利用可撓式陣列線圈所取得的實驗再現性角度差減少為平面式線圈之77%,並且使用可撓式陣列線圈所得到之腦脊髓神經纖維追蹤影像也比用平面式線圈所得之更加完整。 本研究成功地製作了一四通道可撓式陣列線圈平台,除了利用仿體與活體實驗來評估其品質外,本研究更驗證了此線圈於大鼠中樞神經系統之擴散磁振造影的可行性。藉由訊雜比與對比雜訊比之提昇,此可撓式陣列線圈平台有助於更多磁振造影技術於中樞神經系統之研究與應用。 | zh_TW |
| dc.description.abstract | Magnetic resonance imaging (MRI) techniques such as anatomical and diffusion tensor imaging (DTI) have been widely applied to investigate the central nervous system (CNS). However, commercial MRI coils could not provide sufficient signal-to-noise ratio (SNR) at the neck due to cervical lordosis (inward curvature), therefore hampering the applications from brain to the spine. The aim of this work was to design and implement a 4-channel curved array coil that provides uniform sensitivity along the CNS, improving studies of the head and spinal column.
The 4-channel curved array coil was fabricated on a flexible printed circuit board that could be bent to fit the rat’s contour along the neck while a homemade low input impedance preamplifier eliminates the crosstalk between overlapping coils elements. We evaluated the performance of the coil through anatomical imaging of phantom and rat cervical spine, and finally perform rat cerebrospinal DTI and tractography to show the benefits of a curved array coil. Compared to conventional array coils, the curved array coil offered 1.3- and 1.45-fold SNR gain in phantom and anatomical images of the rat cervical spine respectively. In addition, the contrast-to-noise ratio (CNR) between gray and white matter in spine was alleviated. By combining Wideband MRI technique, the 3D anatomical and high-resolution diffusion weighted images were obtained with a 11-fold acceleration. In reproducibility of DTI, the experimental reproducibility deviation angle acquired by curved array coil was 77% of that by plane array coil. Moreover, the DTI tractography of rat nervous system using the curved array coil was more complete. The 4-channel curved array platform was successfully implemented for rat cerebrospinal MRI. We evaluated its performance by phantom as well as in vivo anatomical imaging and further demonstrated the feasibility of rat cerebrospinal DTI. With improved SNR and CNR, the curved array coil platform could improve or even create new possibilities for biomedical applications in cerebral nervous system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:17:06Z (GMT). No. of bitstreams: 1 ntu-105-R02945034-1.pdf: 5819958 bytes, checksum: 4fd00524c2984af5ebedbfd44573b21c (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 中文摘要 III 英文摘要 IV 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1研究背景 1 1.2研究動機 2 1.3研究目標 2 1.4論文架構 3 第二章 陣列線圈理論 5 2.1射頻線圈理論 5 2.1.1核磁共振造影原理簡介 5 2.1.2 表面線圈及陣列線圈 7 2.1.3 共振頻率 8 2.1.4 匹配電容與調頻電路 9 2.1.5 品質因素 10 2.1.6 S參數 10 2.1.7 磁振造影訊雜比 11 2.2 陣列線圈去耦合理論 14 2.2.1 互感耦合理論 14 2.2.2 幾何去耦合理論 15 2.2.3 前置放大器去耦合理論 16 第三章 方法與材料 18 3.1 低雜訊放大器 18 3.1.1 放大器介紹 18 3.1.2 雜訊指數 18 3.1.3 放大器電路模擬 22 3.1.4 放大器實作及量測結果 25 3.1.5 量測結果討論 30 3.2 四通道可撓式陣列線圈 31 3.2.1 線圈電路設計考量 31 3.2.2 雜訊匹配電路 33 3.2.3 線圈實作及量測結果 34 3.2.4 雜訊匹配量測方法及量測結果 36 3.3 實驗流程與參數設定 39 第四章 實驗結果 42 4.1 仿體實驗驗證 42 4.1.1各通道影像與合併影像 43 4.1.2雜訊相關性 44 4.1.3平行影像重建與靈敏度 44 4.1.4曲度仿體驗證 45 4.2 大鼠活體解剖影像 46 4.2.1各通道影像與合併影像 47 4.2.2雜訊相關性 49 4.2.3平行影像重建與靈敏度 50 4.2.4軸向影像 51 4.3 擴散磁振造影應用 52 4.3.1 擴散張量造影簡介 52 4.3.2 非等向性圖及擴散張量圖 53 4.3.3 實驗再現性角度差 57 4.3.4 神經纖維追蹤 60 4.4 寬頻磁振造影應用 61 4.4.1 寬頻磁振造影應用於大鼠解剖影像 61 4.4.2 寬頻磁振造影應用於擴散權重影像 62 第五章 討論、結論與未來工作 64 5.1 實驗結果討論 64 5.1.1 可撓式線圈之限制 64 5.1.2 影像訊雜比增益之實驗值與理論值 65 5.1.3 可撓式線圈與傳統線圈之比較 68 5.1.4 神經纖維追蹤 70 5.2 結論 72 5.3 未來工作 72 參考文獻 75 附錄 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 寬頻磁振造影 | zh_TW |
| dc.subject | 擴散張量影像 | zh_TW |
| dc.subject | 去耦合方法 | zh_TW |
| dc.subject | 可撓式陣列線圈 | zh_TW |
| dc.subject | 實驗再現性角度差 | zh_TW |
| dc.subject | 訊雜比增益 | zh_TW |
| dc.subject | 神經纖維追蹤 | zh_TW |
| dc.subject | decoupling mechanism | en |
| dc.subject | fiber tracking | en |
| dc.subject | experimental reproducibility deviation angle | en |
| dc.subject | diffusion tensor imaging | en |
| dc.subject | Wideband MRI | en |
| dc.subject | 4-channel curved array | en |
| dc.subject | signal-to-noise ratio gain | en |
| dc.title | 四通道可撓式陣列線圈於大鼠腦脊髓磁振造影之研究 | zh_TW |
| dc.title | Magnetic Resonance Imaging of Rat’s Brain and Spine Using Curved Four-channel Phased Array Coil | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林胤藏(In-Tsang Lin),廖漢文(Hon-Man Liu),賴達明(Da-Ming Lai),郭立威(Li-Wei Kuo),蘇家豪(Chia-Hao Su) | |
| dc.subject.keyword | 可撓式陣列線圈,去耦合方法,訊雜比增益,寬頻磁振造影,擴散張量影像,實驗再現性角度差,神經纖維追蹤, | zh_TW |
| dc.subject.keyword | 4-channel curved array,decoupling mechanism,signal-to-noise ratio gain,Wideband MRI,diffusion tensor imaging,experimental reproducibility deviation angle,fiber tracking, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU201603099 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 5.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
