請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4909
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳湘鳳(Shana Smith) | |
dc.contributor.author | Fang-Yun Yang | en |
dc.contributor.author | 楊芳雲 | zh_TW |
dc.date.accessioned | 2021-05-14T17:50:16Z | - |
dc.date.available | 2020-09-03 | |
dc.date.available | 2021-05-14T17:50:16Z | - |
dc.date.copyright | 2015-09-03 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-20 | |
dc.identifier.citation | 3Dconnexion, Inc. (2014). Retrieved August 20th, 2015, from http://www.3dconnexion.com.cn/products/spacemouse.html
Abidi, M. H., Ahmad, A., El-Tamimi, A. M., & Al-Ahmari, A. M. (2012). Development and evaluation of a virtual assembly trainer. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1), 2560–2564. Argelaguet, F., & Andujar, C. (2013). A survey of 3D object selection techniques for virtual environments. Computers & Graphics, 37(3), 121–136. Bhatti, A., Nahavandi, S., Khoo, Y. B., Creighton, D., Anticev, J., & Zhou, M. (June 14-19, 2009). Haptically enable interactive virtual assembly training system development and evaluation. Proceedings of the 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, SIMTECT, Adelaide, South Australia, 1–6. Chang, E.-C. (2015). Development of a Wearable Tactile Feedback Glove with Realistic Tactile Feedback in Immersive VR Environment. M.S. Thesis, National Taiwan University, Taipei, Taiwan. Germanico, G.-B., Hugo, M.-C., Lim, T., Ritchie, J., & Garbaya, S. (2014). The development of a physics and constraint-based haptic virtual assembly system. Assembly Automation, 34(1), 41–55. Guiard, Y. (1987a). Asymmetric division of labor in human skilled bimanual action: the kinematic chain as a model. Journal of Motor Behavior, 19(4), 486–517. Hsu, T.-K. (2015). Development of an Augmented Reality Constraint-Based Assembly System with Natural User Interface. M.S. Thesis, National Taiwan University, Taipei, Taiwan. Holz, D., Ullrich, S., Wolter, M., & Kuhlen, T. (2008). Multi-contact grasp interaction for virtual environments. Journal of Virtual Reality and Broadcasting,5(7). Jacobs, J., Stengel, M., & Froehlich, B. (March, 2012, 4-5). A generalized god-object method for plausible finger-based interactions in virtual environments. 2012 IEEE Symposium on 3D User Interfaces (3DUI), Orange County, CA, USA, 43–51. Jia, D., Bhatti, A., Nahavandi, S., & Horan, B. (2013). Human performance measures for interactive haptic-audio-visual interfaces. IEEE Transactions on Haptics, 6(1). Leap Motion Hand Tracking Device, retrieved August 20th, 2015, https://www.leapmotion.com/ Lieberman, J. & Breazeal, C. (2007). TIKL: Development of a Wearable Vibrotactile Feedback Suit for Improved Human Motor Learning. IEEE Transactions on Robotics, 23(5), 919–926. Lim, T., Ritchie, J. M., Dewar, R. G., Corney, J. R., Wilkinson, P., Calis, M., Desmulliez, M., Fang, J.-J. (2007). Factors affecting user performance in haptic assembly. Virtual Reality, 11(4), 241–252. Novint Technologies, Retrieved August 20th, 2015, from http://www.novint.com/index.php/novint/company Phantom Omni, 6DOF. Retrieved August 20th, 2015, from http://www.dentsable.com/haptic-phantom-omni.htm PhantomR Premium, Retrieved August 20th, 2015, from http://www.geomagic.com/en/products/phantom-premium-6dof/overview/ Schorr, S., Quek, Z. F., Romano, R. Y., Nisky, I., Provancher, W., & Okamura, A. M. (May, 2013, 6-10). Sensory substitution via cutaneous skin stretch feedback. 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 2341–2346. SensAble Technologies, Inc. (2014). Retrieved August 20th, 2015, from http://www.dentsable.com/haptic-phantom-omni.htm Seth, A., Su, H.-J., & Vance, J. M. (2008). Development of a dual-handed haptic assembly system: SHARP. Journal of Computing and Information Science in Engineering, 8(4). Seth, A., Vance, J. M., & Oliver, J. H. (2011). Virtual reality for assembly methods prototyping: a review. Virtual Reality, 15(1), 5–20. Ullrich, S., Knott, T., Law, Y. C., Grottke, O., & Kuhlen, T. (March, 2011, 19-20). Influence of the bimanual frame of reference with haptics for unimanual interaction tasks in virtual environments. 2011 IEEE Symposium on 3D User Interfaces (3DUI), Singapore, 39–46. Unity3D pro 4.6.4f1 Editor. Retrieved August 20th, 2015, from http://unity3d.com/cn/ Velaz, Y., Lozano-Rodero, A., Suescun, A., & Gutierrez, T. (2014). Natural and hybrid bimanual interaction for virtual assembly tasks. Virtual Reality, 18(3), 161–171. Vo, D. M., Vance, J. M., & Marasinghe, M. G. (March, 2009,18-20). Assessment of haptics-based interaction for assembly tasks in virtual reality. Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, UT, USA, 494–499. Yoon, J. (2011). Assembly simulations in virtual environments with optimized haptic path and sequence. Robotics and Computer-Integrated Manufacturing, 27(2), 306–317. Zhu, H., Wu, D., & Fan, X. (2010). Interactive assembly tool planning based on assembly semantics in virtual environment. The International Journal of Advanced Manufacturing Technology, 51(5-8), 739–755. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4909 | - |
dc.description.abstract | 虛擬實境於工程組裝的應用近年來被廣泛的討論與實現,相較於在真實世界中進行組裝,使用者在虛擬環境中組裝可以達到降低操作成本、操作危險性,以及重複操作等好處。近年來由於科技技術的提升,許多新興的人機界面技術相繼誕生,因此,如何運用這些技術,來使虛擬組裝能更符合使用者日常生活中的操作習慣,邁向自然使用者界面(NUI)的設計,便成為本研究致力達成的目標。本研究提出一個具有擬真操作模式的虛擬組裝系統,供使用者進行直接運用雙手和使用工具的組裝,並擁有兩種力回饋模式,提供使用者在視覺之外,更真實的觸覺感受。本研究使用Chang(2015)所研發的震動力回饋手套提供使用者觸覺回饋,並搭配Leap Motion的手部位置偵測作為手部模擬,使用PHANToM OmniR提供使用者肢覺回饋作為組裝工具模擬。雙手應用和使用3D滑鼠來轉換視角的設計讓使用者在虛擬環境中能有更擬真的感受。最後,本研究設計了二組組裝流程進行使用者測試,結果顯示使用者傾向於用震動力回饋手套抓取大物件,用PHANToM OmniR抓取小物件;在組裝效率方面,震動力回饋手套加PHANToM OmniR的複合模式得分最高,證實了本研究所建立的虛擬組裝系統具有組裝效率並且在人機介面的設計上符合自然使用者界面。 | zh_TW |
dc.description.abstract | Applications of assembly in virtual reality are increasingly discussed and implemented in recent years. Compared to real world assembly, users can complete necessary tasks in virtual reality with lowered cost, less potential hazards, and the ability of repeat manipulation. Thanks to the development of technologies, many human-computer interfaces with novel technologies have been born. Therefore, how to manage and combine these technologies into a virtual assembly system and also design it according to user’s daily habits, trying to achieve the design of natural user interface becoming a goal for this research. A virtual assembly system with realistic operating modes were proposed by us, which can provide users directly using their hands or using assembly tools to assemble, and it also equipped two different haptic feedbacks providing users with not only visual feedback but also haptic feedback. A pair of gloves developed by Chang(2015) were tracked by Leap Motion were served as users hands simulation providing users with vibrio-tactile feedback, and the PHANToM OmniR was used to provide kinesthetic force feedback to simulate assembly tools in VR. In order to provide users with a more realistic VR environment, Dual-handed manipulation was designed and 3D mouse was used for changing viewpoints. At the end, two case studies were designed. The result shows that users tend to use gloves to grab large objects, and use PHANToM OmniR to grab small objects. Considering of the task completion time, the hybrid mode, which combined gloves and PHANToM OmniR, was the most efficient mode. As a result, the virtual assembly system with hybrid mode developed by us was confirmed to be efficient and has natural user interface. | en |
dc.description.provenance | Made available in DSpace on 2021-05-14T17:50:16Z (GMT). No. of bitstreams: 1 ntu-104-R02522607-1.pdf: 4195468 bytes, checksum: 26c0a1a0c83e64a2d53280320bb1c04a (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 I
摘要 III 圖目錄 VIII 表目錄 XII 第一章 研究背景介紹、動機與目的 1 1.1 研究背景介紹 1 1.1.1 虛擬實境 1 1.1.2 虛擬組裝 1 1.1.3 力回饋 2 1.1.4 人機介面 3 1.2 研究動機 3 1.3 研究目的 4 第二章 文獻回顧 5 2.1 力回饋 5 2.2 人機介面 6 2.2.1 物件抓取 6 2.2.2 虛擬手部抓取模擬 7 2.2.3 工具模擬 10 2.2.4 雙手操作 15 2.3 虛擬組裝應用機制 18 2.3.1 物理基礎 19 2.3.2 約束基礎 20 2.4 虛擬組裝系統架構 20 2.5 使用者測試評比 26 2.6 文獻回顧小結 30 2.6.1 力回饋 30 2.6.2 虛擬手部抓取模擬 30 2.6.3 工具模擬 30 2.6.4 雙手操作 31 2.6.5 虛擬組裝應用機制 32 2.6.6 使用者測試評比 32 第三章 硬體裝置介紹 34 3.1 力回饋裝置 34 3.1.1 PHANToM OmniR 34 3.1.2 震動力回饋手套 35 3.2 追蹤裝置 37 3.2.1 Leap Motion 37 3.3 3D操作裝置 39 3.3.1 SpaceMouse wireless 40 第四章 系統實現 41 4.1 建立虛擬實境環境 43 4.1.1 Unity3D 43 4.1.2 視覺畫面 44 3D環境建構 45 4.2 力回饋 48 4.2.1 PHANToM OmniR力回饋 48 4.2.2 自製震動手套力回饋 53 4.3 物件抓取 54 4.3.1 PHANToM OmniR的物件抓取方式 54 4.3.2 虛擬手的物件抓取方式 60 4.4 物件組裝 61 4.4.1 Port組裝邏輯(port assembly constraint) 61 4.4.2 螺絲的接合邏輯 62 4.4.3 組裝視覺邏輯提示 63 4.5 雙PHANToM OmniR操作環境 65 4.5.1 Networking網路連線 65 4.5.2 Unity3D中的網路連線功能 68 第五章 使用者測試 73 5.1 使用者測試內容設計 73 5.2 虎鉗案例 74 5.2.1 四種測式模式 74 5.2.2 測試內容 75 5.2.3 結果討論 76 5.3 致動器案例 85 5.3.1 測試內容 85 5.3.2 結果討論 86 第六章 結論與未來展望 88 6.1 結論 88 6.2 未來展望 89 第七章 參考文獻 90 附件一 94 | |
dc.language.iso | zh-TW | |
dc.title | 建立一個具有自然使用者介面的複合式力回饋虛擬組裝系統 | zh_TW |
dc.title | Development of a Hybrid Haptic Feedback Virtual Assembly System with Natural User Interface | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 詹魁元(Kuei-Yuan Chan),林清安(Alan C. Lin) | |
dc.subject.keyword | 虛擬實境,觸覺力回饋,肢覺回饋,自然使用者界面,組裝,組裝工具, | zh_TW |
dc.subject.keyword | virtual reality,vibrio-tactile feedback,kinesthetic force feedback,natural user interface,assembly,assembly tool, | en |
dc.relation.page | 100 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2015-08-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf | 4.1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。