Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49090
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor董致韡(Chih-wei Tung)
dc.contributor.authorYu-An Chenen
dc.contributor.author陳昱安zh_TW
dc.date.accessioned2021-06-15T11:15:43Z-
dc.date.available2017-03-01
dc.date.copyright2016-10-26
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.citation陳恆、林茂森與胡凱康 (2008) 臺灣水稻譜系資料庫
Aarts, M.G.M., W.G. Dirkse, W.J. Stiekema and A. Pereira. 1993. Transposon tagging of a male sterility gene in Arabidopsis. Nature 363: 715-17.
Aho, A.V., B.W. Kernighan and P.J. Weinberger. 1988. The AWK Programming Language.
Akkaya, M.S., A.A. Bhagwat and P.B. Cregan. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132: 1131-39.
Ayliffe, M.A., M. Pallotta, P. Langridge and A.J. Pryor. 2007. A barley activation tagging system. Plant Mol Biol 64: 329-47.
Bennetzen, J.L. 2005. Transposable elements, gene creation and genome rearrangement in flowering plants. Current Opinion in Genetics & Development 15: 621-27.
Berg, C.A. and A.C. Spradling. 1991. Studies on the rate and site-specificity of P element transposition. Genetics 127: 515-24.
Britten, R.J. 1997. Mobile elements inserted in the distant past have taken on important functions. Gene 205: 177-82.
Brosius, J. and H. Tiedge. 1996. Reverse Transcriptase: Mediator of Genomic Plasticity. In: Y. Becker, editor Molecular Evolution of Viruses — Past and Present. Springer US, Boston, MA. p. 91-107.
Casacuberta, J.M. and N. Santiago. 2003. Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene 311: 1-11.
Chen, J., Q. Hu, Y. Zhang, C. Lu and H. Kuang. 2014. P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucleic acids research 42: D1176-81.
Cingolani, P., A. Platts, L. Wang le, M. Coon, T. Nguyen, L. Wang, et al. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6: 80-92
Cock, P.J., C.J. Fields, N. Goto, M.L. Heuer and P.M. Rice. 2010. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic acids research 38: 1767-1771.
Copetti, D., J. Zhang, M. El Baidouri, D. Gao, J. Wang, E. Barghini, et al. 2015. RiTE database: a resource database for genus-wide rice genomics and evolutionary biology. BMC genomics 16.
Cornish-Bowden, A. 1985. Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984. Nucleic Acids Res 13: 3021-3030.
Craig, N.L., R. Craigie, M. Gellert and A.M. Lambowitz. 2002. Mobile DNA II.
Crooks, G.E., G. Hon, J.M. Chandonia and S.E. Brenner. 2004. WebLogo: a sequence logo generator. Genome Res 14: 1188-90.
DeMarco, R., T.M. Venancio and S. Verjovski-Almeida. 2006. SmTRC1, a novel Schistosoma mansoni DNA transposon, discloses new families of animal and fungi transposons belonging to the CACTA superfamily. BMC Evol Biol 6: 89.
Dietrich, C.R., F. Cui, M.L. Packila, J. Li, D.A. Ashlock, B.J. Nikolau, et al. 2002. Maize Mu Transposons Are Targeted to the 5′ Untranslated Region of the gl8 Gene and Sequences Flanking Mu Target-Site Duplications Exhibit Nonrandom Nucleotide Composition Throughout the Genome. Genetics 160: 697-716.
Ejima, Y. and L. Yang. 2003. Trans mobilization of genomic DNA as a mechanism for retrotransposon-mediated exon shuffling. Human Molecular Genetics 12: 1321-28.
Ellinghaus, D., S. Kurtz and U. Willhoeft. 2008. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9: 1-14.
Feschotte, C. and E.J. Pritham. 2007. DNA Transposons and the Evolution of Eukaryotic Genomes. Annu Rev Genet 41: 331-368.
Feschotte, C., X. Zhang and S.R. Wessler. 2002. Miniature Inverted-repeat Transposable Elements (MITEs) and their Relationship with Established DNA Transposons. Mobile DNA II.
Fladung, M. and O. Polak. 2012. Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery.
Fujino, K., H. Sekiguchi and T. Kiguchi. 2005. Identification of an active transposon in intact rice plants. Molecular Genetics and Genomics 273: 150-57.
Fujino, K. and H. Sekiguchi. 2011. Transposition behavior of nonautonomous a hAT superfamily transposon nDart in rice (Oryza sativa L.). Mol Genet Genomics 286: 135-42.
Gaut, B.S., B.R. Morton, B.C. McCaig and M.T. Clegg. 1996. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci U S A 93: 10274-9.
Gbadegesin, M.A. and J.R. Beeching. 2010. Enhancer/Suppressor Mutator (En/Spm)-like transposable elements of cassava (Manihot esculenta) are transcriptionally inactive. Genet Mol Res 9: 639-50.
Gilbert, D.M., M.C. Bridges, A.E. Strother, C.E. Burckhalter, J.M. Burnette, 3rd and C.N. Hancock. 2015. Precise repair of mPing excision sites is facilitated by target site duplication derived microhomology. Mob DNA 6: 15.
Greco, R., P.B. Ouwerkerk, R.J. De Kam, C. Sallaud, C. Favalli, L. Colombo, et al. 2003. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theor Appl Genet 108: 10-24.
Hagemann, S., W. Miller, E. Haring and W. Pinsker. 1998. Nested insertions of short mobile sequences in Drosophila P elements. Chromosoma 107:6-16.
Han, Y. and S.R. Wessler. 2010. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic acids research 38: e199.
Hirohiko, H. 2001. Contribution of the Tos17 retrotransposon to rice functional genomics. Current Opinion in Plant Biology 4:118-122.
Huang, C.R.L., K.H. Burns and J.D. Boeke. 2012. Active Transposition in Genomes. Annual Review of Genetics 46: 651-75.
Huang, X., G. Lu, Q. Zhao, X. Liu and B. Han. 2008. Genome-Wide Analysis of Transposon Insertion Polymorphisms Reveals Intraspecific Variation in Cultivated Rice. Plant Physiol 148: 25-40.
International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. Nature 436: 793-800.
Izawa, T., T. Ohnishi, T. Nakano, N. Ishida, H. Enoki, H. Hashimoto, et al. 1997. Transposon tagging in rice. Plant Molecular Biology 35: 219-29.
Jiang, N., Z. Bao, X. Zhang, S.R. Eddy and S.R. Wessler. 2004. Pack-MULE transposable elements mediate gene evolution in plants. Nature 431: 569-73.
Jones, C.J., K.J. Edwards, S. Castaglione, M.O. Winfield, F. Sala, C. van de Wiel, et al. 1997. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Molecular Breeding 3: 381-90.
Jurka, J., V.V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany and J. Walichiewicz. 2005. Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research 110: 462-67.
Kapitonov, V.V. and J. Jurka. 2001. Rolling-circle transposons in eukaryotes. Proceedings of the National Academy of Sciences 98: 8714-19.
Katoh, K. and K. Misawa. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. 30: 3059-66.
Katti, M.V., P.K. Ranjekar and V.S. Gupta. 2001. Differential Distribution of Simple Sequence Repeats in Eukaryotic Genome Sequences. Molecular Biology and Evolution 18: 1161-67.
Kawahara, Y., M. de la Bastide, J.P. Hamilton, H. Kanamori, W.R. McCombie, S. Ouyang, et al. 2013. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (N Y) 6: 4.
Kejnovsky, E., J.S. Hawkins and C. Feschotte. 2012. Plant Transposable Elements: Biology and Evolution. In: F. J. Wendel, J. Greilhuber, J. Dolezel and J. I. Leitch, editors, Plant Genome Diversity Volume 1: Plant Genomes, their Residents, and their Evolutionary Dynamics. Springer Vienna, Vienna. p. 17-34.
Kempken, F. and F. Windhofer. 2001. The hAT family: a versatile transposon group common to plants, fungi, animals, and man. Chromosoma 110: 1-9.
Khan, M.F., B.S. Yadav, K. Ahmad and A.K. Jaitly. 2011. Mapping and analysis of the LINE and SINE type of repetitive elements in rice. Bioinformation 7(6): 276-279.
Koprek, T., S. Rangel, D. McElroy, J.D. Louwerse, R.E. Williams-Carrier and a.P.G. Lemaux. 2001. Transposon-Mediated Single-Copy Gene Delivery Leads to Increased Transgene Expression Stability in Barley. Plant Physiology Vol. 125, pp. 1354-1362.
Kruglyak, S., R. Durrett, M.D. Schug and C.F. Aquadro. 2000. Distribution and Abundance of Microsatellites in the Yeast Genome Can Be Explained by a Balance Between Slippage Events and Point Mutations. Molecular Biology and Evolution 17: 1210-19.
Lee, T.-H., H. Guo, X. Wang, C. Kim and A.H. Paterson. 2014. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15: 1-6.
Li, H. and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-60.
Lisch, D. 2013. How important are transposons for plant evolution? Nat Rev Genet 14: 49-61.
Ma, J. and J.L. Bennetzen. 2004. Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci U S A 101: 12404-10.
Madden, T. 2013. The BLAST Sequence Analysis Tool.
McElroy, D., J.D. Louwerse, S.M. McEIroy and P.G. Lemaux. 1997. Development of a simple transient assay for Ac/Ds activity in cells of intact barley tissue. The Plant Journal 11(1), 157-165.
Miyao, A. 2003. Target Site Specificity of the Tos17 Retrotransposon Shows a Preference for Insertion within Genes and against Insertion in Retrotransposon-Rich Regions of the Genome. The Plant Cell Online 15: 1771-80.
Moran, J.V., R.J. DeBerardinis and H.H. Kazazian. 1999. Exon Shuffling by L1 Retrotransposition. Science 283: 1530-34.
Morgante, M., S. Brunner, G. Pea, K. Fengler, A. Zuccolo and A. Rafalski. 2005. Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37: 997-1002.
Muñoz-López, M. and J.L. García-Pérez. 2010. DNA Transposons: Nature and Applications in Genomics.
Naito, K., E. Cho, G. Yang, M.A. Campbell, K. Yano, Y. Okumoto, et al. 2006. Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci U S A 103: 17620-5.
Naito, K., F. Zhang, T. Tsukiyama, H. Saito, C.N. Hancock, A.O. Richardson, et al. 2009. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461: 1130-34.
Nobuhiko, O., Y. Kentaro, O. Yutaka, T. Takuji, T. Masayoshi and T. Takatoshi. 2008. A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica. Genes Genet Syst 83: 321-9.
Nouroz, F., N. S. and H.-H.J. S. 2016. Characterization and diversity of novel PIF/Harbinger dna transposons in brassica genomes. Pakistan Journal of Botany 48: 167-67.
Oki, N., K. Yano, Y. Okumoto, T. Tsukiyama, M. Teraishi and T. Tanisaka. 2008. A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica. Genes Genet Syst 83: 321-9.
Panaud, O., X. Chen and S.R. McCouch. 1996. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Molecular and General Genetics MGG 252: 597-607.
Parinov, S., M. Sevugan, W.-C.Y. De Ye, M. Kumaran and V. Sundaresan. 1999. Analysis of Flanking Sequences from Dissociation Insertion Lines: A Database for Reverse Genetics in Arabidopsis. The Plant Cell Vol. 11, 2263-2270.
Price, A.L., N.C. Jones and P.A. Pevzner. 2005. De novo identification of repeat families in large genomes. Bioinformatics 21 Suppl 1: i351-8.
Pritham, E.J., C. Feschotte and S.R. Wessler. 2005. Unexpected Diversity and Differential Success of DNA Transposons in Four Species of Entamoeba Protozoans. Molecular Biology and Evolution 22: 1751-63.
Qu, S., A. Desai, R. Wing and V. Sundaresan. 2007. A Versatile Transposon-Based Activation Tag Vector System for Functional Genomics in Cereals and Other Monocot Plants. Plant Physiology 146: 189-99.
Qu, S., J.S. Jeon, P.B. Ouwerkerk, M. Bellizzi, J. Leach, P. Ronald, et al. 2009. Construction and application of efficient Ac-Ds transposon tagging vectors in rice. J Integr Plant Biol 51: 982-92.
Robb, S.M., L. Lu, E. Valencia, J.M. Burnette, 3rd, Y. Okumoto, S.R. Wessler, et al. 2013. The use of RelocaTE and unassembled short reads to produce high-resolution snapshots of transposable element generated diversity in rice. G3 (Bethesda, Md.) 3: 949-57.
Roy, N.S., J.-Y. Choi, S.-I. Lee and N.-S. Kim. 2015. Marker utility of transposable elements for plant genetics, breeding, and ecology: a review. Genes & Genomics 37: 141-51.
SanMiguel, P., A. Tikhonov, Y.-K. Jin, N. Motchoulskaia, D. Zakharov, A. Melake-Berhan, et al. 1996. Nested Retrotransposons in the intergenic Regions of the Maize Genome. Science 274: 765-8.
Schulman, A.H., A.J. Flavell, E. Paux and T.H. Ellis. 2012. The application of LTR retrotransposons as molecular markers in plants. Methods in molecular biology (Clifton, N.J.) 859: 115-53.
Shao, H. and Z. Tu. 2001. Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics 159: 1103-15.
Shen, M.R., t. Mark A. Batzer and P.L. Deininger. 1991. Evolution of the Master Alu Gene(s). Journal of molecular evolution 33: 311-20.
Smit, A.F.A. 1999. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Current Opinion in Genetics & Development 9: 657-63.
Smit, AFA, Hubley, R & Green, P. 2013-2015 RepeatMasker Open-4.0.
Takagi, K., N. Ishikawa, M. Maekawa, K. Tsugane and S. Iida. 2007. Transposon display for active DNA transposons in rice. Genes & Genetic Systems 82: 109-22.
The Rice 3,000 Genome Project. 2014. GigaScience Database.
Tsugane, K., M. Maekawa, K. Takagi, H. Takahara, Q. Qian, C.H. Eun, et al. 2006. An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J 45: 46-57.
Turcotte, K., S. Srinivasan and T. Bureau. 2001. Survey of transposable elements from rice genomic sequences. The Plant Journal 25: 169-79.
Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B.C. Faircloth, M. Remm, et al. 2012. Primer3—new capabilities and interfaces. Nucleic acids research 40: e115.
Upadhyaya, N. 2007. Rice Functional Genomics: Challenges, Progress and Prospects. Springer Science+Business Media.
Van den Broeck, D., T. Maes, M. Sauer, J. Zethof, P. De Keukeleire, M. D’Hauw, et al. 1998. Transposon Display identifies individual transposable elements in high copy number lines. Plant J 13: 121-9.
Wang, N., H. Wang, H. Wang, D. Zhang, Y. Wu, X. Ou, et al. 2010. Transpositional reactivation of the Dart transposon family in rice lines derived from introgressive hybridization with Zizania latifolia. BMC Plant Biology 10: 190.
Wicker, T., F. Sabot, A. Hua-Van, J.L. Bennetzen, P. Capy, B. Chalhoub, et al. 2007. A unified classification system for eukaryotic transposable elements. 2014. The Rice 3,000 Genome Project. GigaScience Database.
Williams, J.G., A.R. Kubelik, K.J. Livak, J.A. Rafalski and S.V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic acids research 18: 6531-5.
Yant, S.R. and M.A. Kay. 2003. Nonhomologous-End-Joining Factors Regulate DNA Repair Fidelity during Sleeping Beauty Element Transposition in Mammalian Cells. Molecular and Cellular Biology 23: 8505-18.
Yasuda, K., M. Ito, T. Sugita, T. Tsukiyama, H. Saito, K. Naito, et al. 2013. Utilization of transposable element mPing as a novel genetic tool for modification of the stress response in rice. Mol Breed 32: 505-16.
Ye, C., G. Ji and C. Liang. 2016. detectMITE: A novel approach to detect miniature inverted repeat transposable elements in genomes. Scientific Reports 6: 19688.
Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids research 31: 3406-15.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49090-
dc.description.abstract跳躍子 (transposable elements) 又稱跳躍子,是一種能在基因體中移動的DNA片段,於1940年代由Barbara McClintock發現。水稻 (Oryza sativa L.) 基因體中有1,731,500個跳躍子,其中359,321個為第二型跳躍子 (DNA transposon)。大部分第二型跳躍子進行轉位 (transposition) 時插入在靶位點 (target site),並於轉位再次發生時形成靶位點重複 (target site duplications, TSDs) 。本研究使用生物資訊工具分析68個主要來自亞洲地區,稉、秈稻品系的次世代定序資料,從水稻基因體中搜尋中兩種形式的靶位點重複: (1) 位於第二型跳躍子兩端的側翼序列, (2) 第二型跳躍子轉位後所形成的二重複序列。以第一種形式的靶位點序列長度作為參考值,搜尋第二種形式的靶位點重複,將其視為假定的靶位點重複 (putative TSDs, pTSDs) ,並以pTSDs的染色體圖譜比較68品系間的差異。此外,也針對水稻蛋白編碼序列中由pTSDs造成的基因體變異 (genomic variation) 進行搜尋。研究結果顯示,本研究所分析的四類第二型跳躍子 (Mutator, dDart, iDart及nDart) 靶位點皆具有長度偏好性,但僅部分種類跳躍子的靶位點具有序列偏好性。pTSDs染色體圖譜在水稻品系間具有多型性,可從中觀察水稻品系間的基因漸滲 (introgression) 。68水稻品系中共有118個基因之蛋白編碼序列含有由pTSDs造成的基因體變異。未來期望將本研究結果提供給學者作為參考,增進對跳躍子的認識,並將這些知識應用於作物品種改良。zh_TW
dc.description.abstractTransposable elements, also known as transposons, are mobile DNA segments in genome discovered by Barbara McClintock in 1940s. There are 1,731,500 transposable elements in rice (Oryza sativa L.) genome, of which 359,321 belong to type II transposable elements (DNA transposons). Most of the DNA transposons insert in target site during transpositions. When transpositions happen again, the target site duplications (TSDs) would be generated in most of cases. In this study, we used next generation sequencing data of 68 rice accesions that are mainly originated from Asia, including japonica and indica for bioinformatics analysis. We analyzed two types of TSDs: (1) locate at both flanking sequences of type II transposable elements, and (2) appear as two tandem repeats after transpositions of type II transposable elements. Take the length of type one TSDs as reference information to search types two TSDs in 68 rice accessions as putative target site duplications (pTSDs), and display chromosome plots of pTSDs for comparison between 68 accessions. Moreover, we also search for protein coding sequences which contain genomic variations that caused by pTSDs. The results showed that the type II transposable elements in this study (Mutator, dDart, iDart and nDart) have length preference for target site but only some of them have sequence preference for target sites. We can observe introgression event through polymorphism between accessions of pTSDs on chromosome plots. There are 118 genes in total which contain genomic variation that caused by pTSDs. We hope researchers can use the results of this study in the future for better understanding of transposable elements and also for crop improvement.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:15:43Z (GMT). No. of bitstreams: 1
ntu-105-R03621118-1.pdf: 13996217 bytes, checksum: 541bbebb485a49020739f767c5abbdaa (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目錄 IV
表目錄 VII
圖目錄 VIII
附表目錄 IX
附圖目錄 X
附錄文字目錄 XI
縮寫表 1
壹、前言 2
貳、前人研究 5
一、跳躍子簡介 5
二、已發現的第二型跳躍子 8
三、跳躍子的應用 10
四、靶位點 12
五、跳躍子相關資料庫及生物資訊工具 13
參、材料與方法 15
一、實驗材料 15
二、搜尋跳躍子側翼序列中的TSDs 16
三、從定序資料尋找可能為TSDs的二重複序列 17
四、驗證生物資訊工具輸出的二重複序列 20
五、繪製pTSDs染色體圖譜 22
六、搜尋TSDs造成的蛋白序列變異 24
肆、結果 24
一、搜尋跳躍子側翼序列中的TSDs 24
二、從定序資料尋找可能為TSDs的二重複序列 25
三、驗證生物資訊工具輸出的二重複序列 26
四、繪製pTSDs的染色體圖譜 30
五、搜尋TSDs造成的蛋白序列變異 31
伍、討論 33
一、搜尋跳躍子側翼序列中的TSDs 33
二、從定序資料尋找可能為TSDs的二重複序列 33
三、驗證生物資訊工具輸出的二重複序列 35
四、繪製pTSDs的染色體圖譜 35
五、搜尋TSDs造成的蛋白序列變異 36
六、以SNPhylo繪製68個水稻品系的分群樹 36
七、pTSDs和SSRs之比較 37
八、未來展望 38
陸、參考文獻 65
柒、附錄 73
dc.language.isozh-TW
dc.titleDNA跳躍子在水稻基因體中的足跡zh_TW
dc.titleFootprints of DNA Transposable Elements in Rice Genomeen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor邢禹依(Yu-Ie Hsing)
dc.contributor.oralexamcommittee黃永芬(Yung-Fen Huang),劉力瑜(Li-yu Liu),林恩仲(En-Chung Lin)
dc.subject.keyword生物資訊,作物育種,水稻 (Oryza sativa L.),靶位點重複,第二型跳躍子,zh_TW
dc.subject.keywordbioinformatics,crop breeding,rice (Oryza sativa L.),target site duplications,type II transposable elements,en
dc.relation.page158
dc.identifier.doi10.6342/NTU201603359
dc.rights.note有償授權
dc.date.accepted2016-08-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
13.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved