Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4908
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 林俊彬 | |
dc.contributor.author | Yu-Hsiang Wang | en |
dc.contributor.author | 王毓襄 | zh_TW |
dc.date.accessioned | 2021-05-14T17:50:15Z | - |
dc.date.available | 2015-09-24 | |
dc.date.available | 2021-05-14T17:50:15Z | - |
dc.date.copyright | 2015-09-24 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-20 | |
dc.identifier.citation | 1. Nakashima, M., et al., Regulatory role of transforming growth factor-β, bone morphogenetic protein-2, and protein-4 on gene expression of extracellular matrix proteins and differentiation of dental pulp cells. Developmental biology, 1994. 162(1): p. 18-28.
2. Ng, Y.L., V. Mann, and K. Gulabivala, A prospective study of the factors affecting outcomes of nonsurgical root canal treatment: part 1: periapical health. International endodontic journal, 2011. 44(7): p. 583-609. 3. Jafarzadeh, H. and Y.-N. Wu, The C-shaped root canal configuration: a review. Journal of endodontics, 2007. 33(5): p. 517-523. 4. Peters, O.A., Current challenges and concepts in the preparation of root canal systems: a review. Journal of endodontics, 2004. 30(8): p. 559-567. 5. Cvek, M., Prognosis of luxated non‐vital maxillary incisors treated with calcium hydroxide and filled with gutta‐percha. A retrospective clinical study. Dental Traumatology, 1992. 8(2): p. 45-55. 6. Cvek, M., et al., Pulp reactions to exposure after experimental crown fractures or grinding in adult monkeys. Journal of endodontics, 1982. 8(9): p. 391-397. 7. Trope, M., Regenerative potential of dental pulp. Journal of endodontics, 2008. 34(7): p. S13-S17. 8. Hargreaves, K.M., et al., Regeneration potential of the young permanent tooth: what does the future hold? Journal of endodontics, 2008. 34(7): p. S51-S56. 9. Tziafas, D., A. Smith, and H. Lesot, Designing new treatment strategies in vital pulp therapy. Journal of dentistry, 2000. 28(2): p. 77-92. 10. Rutherford, R.B., et al., Induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Archives of Oral Biology, 1993. 38(7): p. 571-576. 11. Hu, C.-C., et al., Reparative dentin formation in rat molars after direct pulp capping with growth factors. Journal of endodontics, 1998. 24(11): p. 744-751. 12. Zhang, W. and P.C. Yelick, Vital pulp therapy—current progress of dental pulp regeneration and revascularization. International journal of dentistry, 2010. 2010. 13. Lee, J.-B., et al., Physical properties and biological/odontogenic effects of an experimentally developed fast-setting alpha-tricalcium phosphate-based pulp capping material. BMC oral health, 2014. 14(1): p. 87. 14. Accorinte Mde, L., et al., Evaluation of mineral trioxide aggregate and calcium hydroxide cement as pulp-capping agents in human teeth. J Endod, 2008. 34(1): p. 1-6. 15. Sangwan, P., et al., Tertiary dentinogenesis with calcium hydroxide: A review of proposed mechanisms. International endodontic journal, 2013. 46(1): p. 3-19. 16. Cox, C., et al., Tunnel defects in dentin bridges: their formation following direct pulp capping. Operative Dentistry, 1995. 21(1): p. 4-11. 17. Torabinejad, M., et al., Physical and chemical properties of a new root-end filling material. Journal of endodontics, 1995. 21(7): p. 349-353. 18. Zhao, W., et al., The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials, 2005. 26(31): p. 6113-6121. 19. Hench, L.L., Bioceramics: from concept to clinic. Journal of the American Ceramic Society, 1991. 74(7): p. 1487-1510. 20. Hulbert, S., et al., History of bioceramics. Ceramics international, 1982. 8(4): p. 131-140. 21. Langstaff, S., et al., Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response. Biomaterials, 2001. 22(2): p. 135-150. 22. Neo, M., et al., A comparative study of ultrastructures of the interfaces between four kinds of surface‐active ceramic and bone. Journal of biomedical materials research, 1992. 26(11): p. 1419-1432. 23. Niemeyer, P., et al., Evaluation of mineralized collagen and alpha-tricalcium phosphate as scaffolds for tissue engineering of bone using human mesenchymal stem cells. Cells, tissues, organs, 2003. 177(2): p. 68-78. 24. Al-Sanabani, J.S., A.A. Madfa, and F.A. Al-Sanabani, Application of calcium phosphate materials in dentistry. Int J Biomater, 2013. 2013: p. 876132. 25. Dobie, K., et al., Effects of Alginate Hydrogels and TGF-β1 on Human Dental Pulp Repair In Vitro. Connective Tissue Research, 2002. 43(2-3): p. 387-390. 26. Hwang, Y.C., et al., Influence of TGF-beta1 on the expression of BSP, DSP, TGF-beta1 receptor I and Smad proteins during reparative dentinogenesis. J Mol Histol, 2008. 39(2): p. 153-60. 27. Li, Y., et al., Odontoblast-like cell differentiation and dentin formation induced with TGF-beta1. Arch Oral Biol, 2011. 56(11): p. 1221-9. 28. Tziafas, D., et al., Dentin regeneration in vital pulp therapy: design principales. Advances in dental research, 2001. 15(1): p. 96-100. 29. Piattelli, A., et al., Transforming Growth Factor‐beta 1 (TGF‐beta 1) expression in normal healthy pulps and in those with irreversible pulpitis. International endodontic journal, 2004. 37(2): p. 114-119. 30. Sloan, A., J. Matthews, and A. Smith, TGF-β receptor expression in human odontoblasts and pulpal cells. The Histochemical Journal, 1999. 31(8): p. 565-569. 31. Zhao, S., et al., Ultrastructural localisation of TGF-β exposure in dentine by chemical treatment. The Histochemical Journal, 2000. 32(8): p. 489-494. 32. Shirakawa, M., et al., Transforming growth factor-beta-1 reduces alkaline phosphatase mRNA and activity and stimulates cell proliferation in cultures of human pulp cells. Journal of dental research, 1994. 73(9): p. 1509-1514. 33. Shiba, H., et al., Differential effects of various growth factors and cytokines on the syntheses of DNA, type I collagen, laminin, fibronectin, osteonectin/secreted protein, acidic and rich in cysteine (SPARC), and alkaline phosphatase by human pulp cells in culture. Journal of cellular physiology, 1998. 174(2): p. 194-205. 34. Wei, X., et al., Expression of mineralization markers in dental pulp cells. J Endod, 2007. 33(6): p. 703-8. 35. Liang, R.-F., S. Nishimura, and S. Sato, Effects of epidermal growth factor and transforming growth factor-β on insulin-induced differentiation in rat dental pulp cells. Archives of oral biology, 1992. 37(10): p. 789-795. 36. Melin, M., et al., Effects of TGFβ 1 on dental pulp cells in cultured human tooth slices. Journal of dental research, 2000. 79(9): p. 1689-1696. 37. About, I., et al., Human dentin production in vitro. Exp Cell Res, 2000. 258(1): p. 33-41. 38. Manocha, B. and A. Margaritis, Production and characterization of gamma-polyglutamic acid nanoparticles for controlled anticancer drug release. Crit Rev Biotechnol, 2008. 28(2): p. 83-99. 39. Tsao, C.T., et al., Antibacterial activity and biocompatibility of a chitosan-gamma-poly(glutamic acid) polyelectrolyte complex hydrogel. Carbohydr Res, 2010. 345(12): p. 1774-80. 40. Otani, Y., Y. Tabata, and Y. Ikada, Hemostatic capability of rapidly curable glues from gelatin, poly (L-glutamic acid), and carbodiimide. Biomaterials, 1998. 19(22): p. 2091-2098. 41. Thakur, G., et al., Crosslinking of gelatin-based drug carriers by genipin induces changes in drug kinetic profiles in vitro. J Mater Sci Mater Med, 2011. 22(1): p. 115-23. 42. Mestrener, S.R., R. Holland, and E. Dezan, Influence of age on the behavior of dental pulp of dog teeth after capping with an adhesive system or calcium hydroxide. Dental Traumatology, 2003. 19(5): p. 255-261 43. Wei, X., O. Ugurlu, and M. Akinc, Hydrolysis of ?-Tricalcium Phosphate in Simulated Body Fluid and Dehydration Behavior During the Drying Process. Journal of the American Ceramic Society, 2007. 90(8): p. 2315-2321. 44. Blom, E., et al., Transforming growth factor‐β1 incorporation in a calcium phosphate bone cement: Material properties and release characteristics. Journal of biomedical materials research, 2002. 59(2): p. 265-272. 45. Wang, F., et al., Facile preparation of hydroxyapatite with a three dimensional architecture and potential application in water treatment. CrystEngComm, 2011. 13(19): p. 5634. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4908 | - |
dc.description.abstract | 活髓治療的目的在使牙髓保持活性並形成修復性牙本質,維持牙齒正常生理結構、功能、及牙根發育。活髓治療發展至今在臨床上仍然沒有理想之材料。磷酸鈣骨水泥為一生醫陶瓷材料,在骨科及牙科廣泛應用作為骨缺損的修補材料。然而,磷酸鈣骨水泥於活髓治療的研究中,效果並未優於目前臨床效果最佳的三氧礦化物。因此藉由聚麩胺酸-明膠結合生長因子 TGF-β1 添加至磷酸鈣骨水泥,以研究其誘導牙本質牙髓組織再生的效果。本研究分為四大部分,第一部分為材料物理性質測試,分析包含固化時間、機械性質、降解測試、晶相結構。第二部分為生物相容性分析,以 ISO-10993 標準評估材料之細胞存活率與細胞毒性。第三部分為體外生物活性測試,研究材料對牙髓細胞之促進鈣化生成的效果。第四部份為建立大動物實驗模型,以犬隻評估所研發之生醫材料與市售材料於牙髓組織再生之差異。
研究結果顯示添加聚麩胺酸-明膠不影響磷酸鈣骨水泥隨時間降解及再結晶之生醫陶瓷性質,也不會降低抗壓強度,其初始硬化時間大約五分鐘,最終硬化時間大約九分鐘,符合臨床操作需求。至於生物活性方面,磷酸鈣結合聚麩胺酸-明膠攜帶TGF-β1之生物相容性良好,且體外活性測試發現可較三氧礦化物提早誘導鈣化結節生成,於動物實驗中亦證實可成功誘導完整的牙本質橋生成。 磷酸鈣結合聚麩胺酸-明膠攜帶TGF-β1結合了磷酸鈣的良好物理性質及操作性質、磷酸鈣與聚麩胺酸-明膠的生物相容性,以及充分發揮了TGF-β1促進牙本質在生的優勢,因此磷酸鈣結合聚麩胺酸-明膠攜帶TGF-β1之活髓治療材料的臨床應用,是極具潛力的。 | zh_TW |
dc.description.abstract | Vital pulp therapy is to preserve the pulp vitality as well as to form the reparative dentin for maintaining the normal physical structures and functions of teeth. After years of research and development of the biomaterials, there is no ideal material for vital pulp therapy. Bioactive calcium phosphate cements (CPCs) have been widely used for repairing bone defects because of their excellent biocompatibility and bioactivity. However, CPCs only demonstrated comparative effect with commercial MTA in studies in vital pulp therapy. In this study we evaluated the alpha-tricalcium phosphate cement (α-TCP) with γ-PGA/ gelatin hydrogel carrying TGF-β1 application on vital pulp therapy. Poly-γ-glumatic acid (γ-PGA) is suitable candidate for drug carrier. And TGF-β1 can induce differentiation of dental pulp cell.
The purpose of this study is to evaluate effect of CPC/ hydrogel/ TGF-β1 on pulp-dentin regeneration and vital pulp therapy. We examined the possible intervening effects of hydrogel on the clinical compliance of CPC with assessment of its setting time, compressive strength, degradation, crystallinity, and microscopic structure. Biocompatibility, in vitro bioactivity on cultured human dental pulp cell was evaluated and also animal study was performed to evaluate the ability of CPC/ hydrogel/ TGF-β1 to induce hard tissue formation in vivo. The results showed that the setting time and compressive strength of CPC/ hydrogel exhibited no significant difference compared with CPC. The cell viability and cytotoxicity exhibited no harm to the dental pulp cell and animal study presents this CPC/ hydrogel/ TGF-β1 can induce calcified tissue formation. Based on the results, the developed CPC/ hydrogel/ TGF-β1 has great potential as a material for vital pulp therapy. | en |
dc.description.provenance | Made available in DSpace on 2021-05-14T17:50:15Z (GMT). No. of bitstreams: 1 ntu-104-R01422004-1.pdf: 12283108 bytes, checksum: 3957b1ed75a7782ae48d0045e6f1f0b4 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract iii 第一章:前言 3 第二章:文獻回顧 5 2.1 牙髓功能與重要性 5 2.1.1 牙髓牙本質複合體 (Pulp-dentin Complex) 5 2.1.2 保留牙髓的重要性 6 2.2 活髓治療(Vital Pulp Therapy) 7 2.3 現今活髓治療材料之作用機轉與臨床限制 10 2.3.1 氫氧化鈣(Ca(OH)2) 10 2.3.2 三氧礦化物(Mineral Trioxide Aggregate, MTA) 11 2.4 磷酸鈣生醫陶瓷應用於活髓治療之潛力 11 2.4.1 近惰性生醫陶瓷 (Nearly inert bioceramics) 12 2.4.2 生物吸收性陶瓷 (Resorbable bioceramics) 12 2.4.3 表面活性生醫陶瓷(Surface-active bioceramics) 13 2.5 磷酸鈣骨水泥於組織再生工程之應用及活髓治療之優勢 14 2.6 TGF-β對牙本質再生之效果 15 2.7 聚麩胺酸 (γ-PGA ) 及明膠 (Gelatin) 16 第三章:動機與目的 17 第四章:材料與方法 19 4.1 CPC/ hydrogel/ TGF-β1 製備 19 4.2 材料物理性質分析 21 4.2.1 硬化時間 (Setting Time) 21 4.2.2 Compressive strength 21 4.2.3 降解測試 23 4.2.4 X 光繞射分析 (X-ray Diffraction Analysis) 23 4.2.5 表面型態觀察- 掃描式電子顯微鏡 (SEM) 24 4.3 生物相容性評估 25 4.3.1 細胞培養技術 25 4.3.2 人類牙髓細胞 (human pulp cell) 之初級培養 (primary culture) 26 4.3.3 萃取液備製 28 4.3.4 WST-1 28 4.3.5 LDH 30 4.3.6 Alamar blue 32 4.3.7 電子顯微鏡觀察細胞貼附 (Cell adhesion) 33 4.4 體外生物活性 (In vitro bioactivity) 35 4.4.1 Alizarin Red S 定性染色 35 4.4.2 Alizarin Red S 定量染色 36 4.5 動物實驗 (Animal study) 37 4.5.1 動物實驗 37 4.5.2 實驗步驟 37 4.5.3 動物灌流 38 4.5.4 標本備置 39 4.5.5 Micro CT 42 4.5.6 Evaluation 43 第五章:結果與討論 44 5.1 材料製備與物理性質評估 44 5.1.1 硬化時間 (Setting Time) 45 5.1.2 抗壓強度 (Compressive strength) 46 5.1.3 降解測試 47 5.1.4 X光繞射分析 (X-ray Diffraction Analysis) 48 5.1.5 SEM觀察材料水合後之顯微結構 51 5.2 生物相容性評估 59 5.2.1 細胞貼附試驗 59 5.2.2 WST-1 62 5.2.3 LDH 64 5.2.4 Alamar blue 65 5.3 體外生物活性 67 5.3.1 Alizarin Red S 定性染色 67 5.3.2 Alizarin Red S 定量染色 70 5.4 Animal study 72 第六章:結論 75 第七章:未來研究方向 76 參考文獻 77 圖目錄 圖 4-1 CPC/ hydrogel/ TGF-β1 製備流程圖 20 圖 4-2 動物實驗活髓治療步驟。 42 圖5-1 γ-PGA和gelatin含量對CPC/ hydrogel初始與最終硬化時間影響 45 圖 5-2 γ-PGA和gelatin含量對CPC/ hydrogel抗壓強度之影響 46 圖 5-3 CPC與CPH (CPC/ 1% gelatin/ 1% γ-PGA) 浸泡於PBS之重量損失率 48 圖 5-4 CPC 及 CPC/ hydrogel 浸泡於 PBS 水合三天後之 XRD 產物晶相分析 49 圖 5-5 CPC 及 CPC/ hydrogel 浸泡於 PBS 水合七天後之 XRD 產物晶相分析 50 圖 5-6 CPC 及CPC/ hydrogel 浸泡於 PBS水合十四天後之XRD產物晶相分析 50 圖 5-7 CPC 及 CPC/ hydrogel 浸泡於 PBS 水合三天後之 XRD 產物晶相分析 51 圖 5-8 SEM 觀察 CPC 浸泡於 PBS 不同時間點之水合產物表面顯微結構圖 55 圖 5-9 SEM 觀察 CPC/ hydrogel 浸泡於 PBS 不同時間點之水合產物表面顯微結構圖 58 圖 5 10牙髓細胞於 CPC 表面貼附四小時後情形 59 圖5 11牙髓細胞於 CPC 表面貼附二十四小時後情形 60 圖5 12 牙髓細胞於 CPH 表面貼附四小時後情形 60 圖5 13牙髓細胞於 CPH 表面貼附二十四小時後情形 61 圖5 14牙髓細胞於 MTA 表面貼附四小時後情形 61 圖5 15牙髓細胞於 MTA 表面貼附二十四小時後情形 62 圖 5-16牙髓細胞一天 WST-1 測試結果 63 圖5 17牙髓細胞三天 WST-1 測試結果 63 圖5 18牙髓細胞一天 LDH 測試結果 64 圖5 19牙髓細胞三天 LDH 測試結果 64 圖5 20牙髓細胞三天 Alamar blue 測試結果 65 圖5 21牙髓細胞七天 Alamar blue 測試結果 66 圖5 22牙髓細胞十四天 Alamar blue 測試結果 66 圖5 23牙髓細胞二十一天 alamar blue 測試結果 67 圖5 24牙髓細胞十四天Alizarin red S定性染色. 68 圖5 25牙髓細胞二十一天Alizarin red S定性染色. 69 圖5 26 牙髓細胞十四天Alizarin red S定量測試 71 圖5 27牙髓細胞二十一天Alizarin red S定量測試 71 圖5 28 CPC/ hydrogel之動物實驗兩個月 μ-CT 影像。 72 圖5 29 CPC/ hydrogel/ 400 ng/ml TGF-β1之動物實驗兩個月 μ-CT 影像。 73 圖5 30 MTA 之動物實驗兩個月 μ-CT 影像。 73 表目錄 表 4-1 牙本質橋生成評估表 43 表 5 1 μ-CT 影像硬組織生成評估 74 | |
dc.language.iso | zh-TW | |
dc.title | 研發含聚麩胺酸及明膠之水膠攜帶 TGF-β1之磷酸鈣水泥於活髓治療之研究:材料物理性質、生物活性、生物相容性及動物實驗 | zh_TW |
dc.title | Development of a Calcium Phosphate Cement with γ-PGA/ Gelatin Hydrogel Carrying TGF-β1 for Vital Pulp Therapy | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林弘萍,章浩宏,張志豪,王姻麟 | |
dc.subject.keyword | 磷酸鈣骨水泥,活髓治療,生物相容性,TGF-β1, | zh_TW |
dc.subject.keyword | calcium phosphate cements,alpha-tricalcium phosphate,vital pulp therapy,TGF-β1, | en |
dc.relation.page | 82 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2015-08-20 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
Appears in Collections: | 臨床牙醫學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-104-1.pdf | 12 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.