Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49067
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘國隆(Kou-Long Pan)
dc.contributor.authorPei-Rong Lien
dc.contributor.author李佩蓉zh_TW
dc.date.accessioned2021-06-15T11:15:06Z-
dc.date.available2019-10-05
dc.date.copyright2016-10-05
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.citation1. Lieberman, M.A. and A.J. Lichtenberg, Principles of plasma discharges and materials processing [electronic resource] / Michael A. Lieberman, Allan J. Lichtenberg. 2005: Hoboken, N.J. : Wiley-Interscience, c2005.
2. Fridman, A.A., Plasma chemistry. 2008, New York: Cambridge University Press.
3. Schutze, A., et al., The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. Ieee Transactions on Plasma Science, 1998. 26(6): p. 1685-1694.
4. J. Park, J.Y.J., R. F. Hicks, and G. S. Selwyn, submitted for publication.
5. Vossen, J.L. and W. Kern, Thin film processes II. 1991, Boston: Academic Press.
6. Smith, D.L., Thin-film deposition : principles and practice. 1995, New York: McGraw-Hill.
7. Hsu, C.-C. and Y.-J. Yang, The Increase of the Jet Size of an Atmospheric-Pressure Plasma Jet by Ambient Air Control. IEEE Transactions on Plasma Science, 2010. 38(3): p. 496-499.
8. Reuter, S., et al., Controlling the Ambient Air Affected Reactive Species Composition in the Effluent of an Argon Plasma Jet. IEEE Transactions on Plasma Science, 2012. 40(11): p. 2788-2794.
9. McKelliget, J., et al., Temperature and velocity fields in a gas stream exiting a plasma torch.a mathematical model and its experimental verification. Plasma Chemistry and Plasma Processing, 1982. 2. 83
10. Tsai, I.H. and C.C. Hsu, Numerical Simulation of Downstream Kinetics of an Atmospheric-Pressure Nitrogen Plasma Jet. Ieee Transactions on Plasma Science, 2010. 38(12): p. 3387-3392.
11. Tsai, J.H., C.M. Hsu, and C.C. Hsu, Numerical Simulation of Downstream Kinetics of an Atmospheric Pressure Nitrogen Plasma Jet Using Laminar, Modified Laminar, and Turbulent Models. Plasma Chemistry and Plasma Processing, 2013. 33(6): p. 1121-1135.
12. Grunze, M., W. Hirschwald, and D. Hofmann, Zinc oxide Surface structure, stability, and mechanisms of surface reactions. Journal of Crystal Growth, 1981. 52: p. 241-249.
13. Nyffenegger, R.M., et al., A Hybrid Electrochemical or Chemical Synthesis of Zinc Oxide Nanoparticles and Optically Intrinsic Thin Films. Chem. Mater., 1998. 10: p. 1120-1129.
14. Barankin, M.D., et al., Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature. Solar Energy Materials and Solar Cells, 2007. 91(10): p. 924-930.
15. Hsu, C.-M., et al., Deposition of ZnO Thin Films by an Atmospheric Pressure Plasma Jet-Assisted Process The Selection of Precursors. IEEE Transactions On Plasma Science, 2015. 43.
16. Biswick, T., et al., The role of anhydrous zinc nitrate in the thermal decomposition of the zinc hydroxy nitrates Zn5(OH)8(NO3)2·2H2O and ZnOHNO3·H2O. Journal of Solid State Chemistry, 2007. 180(4): p. 1171-1179.
17. Campbell, I.D., E.S.R. Investigation of the Thermal Decomposition of Zinc Nitrate Hexahydrate. J. Chem. Soc., 1976. 84
18. Kozak, A.J., K. Wieczorek-Ciurowa, and A. Kozak, The Thermal Transformations In Zn(NO3)2-H2O(1:6) System. Journal of Thermal Analysis and Calorimetry, 2003. 74: p. 497-502.
19. Małecka, B., et al., Mass spectral studies on the mechanism of thermal decomposition of Zn(NO3)2·nH2O. Thermochimica Acta, 2003. 404(1-2): p. 125-132.
20. 林心恬, 大氣電漿沉積大面積氧化鋅薄膜與材料性質分布. 國立台灣大學機械工程所碩士論文, 2015.
21. Addison, C.C., J. Lewis, and R. Thompson, The Liquid Dinitrogen Tetroxide Solvent System. Part VIII Products of Reaction Zinc With Liquid Dinitrogen Tetroxide. J. Chem. Soc., 1951.
22. Wolden, C.A., The Role of Oxygen Dissociation in Plasma Enhanced Chemical Vapor Deposition of Zinc Oxide from Oxygen and Diethyl Zinc. Plasma Chemistry and Plasma Processing, 2005. 25(2): p. 169-192.
23. 郭延昇, 常壓PECVD系統內氣流混合以及電漿反應之研究與設計. 國立台灣大學機械所碩士論文., 2014.
24. Capitelli, M., et al., Plasma kinetics in atmospheric gases. Springer series on atomic, optical, and plasma physics. 2000, New York: Springer.
25. Kossyi, I.A., et al., Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Science & Technology, 1992. 1(3): p. 207-220.
26. Moravej, M., et al., Properties of an atmospheric pressure radio-frequency argon and nitrogen plasma. Plasma Sources Science & Technology, 2006. 15(2): p. 204-210.
85
27. Chang, Z.-S., et al., Diagnosis of gas temperature, electron temperature, and electron density in helium atmospheric pressure plasma jet. Physics of Plasmas, 2012. 19(7): p. 073513.
28. Itikawa, Y., Cross Sections for Electron Collisions with Nitrogen Molecules. Journal of Physical and Chemical Reference Data, 2006. 35(1): p. 31.
29. 姜愷傑, 直流脈衝大氣壓電漿噴流塗布氧化鋅摻鎵薄膜製成監控. 國立台灣大學機械所碩士論文, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49067-
dc.description.abstract本文建立數值模型以分析PECVD製程中鍍膜區域流場結構變化以及噴頭內部電漿反應,包含許多物質且相互產生不同的化學反應,利用商用套裝軟體COMSOL Multiphysics5.2進行數值模型,使用紊流模型、熱傳模型、化學模型三種模型耦合進行計算。
首先常壓電漿外部流場模型可了解受氣流結構影響後的物種分布,並且應用於設計線型常壓電漿的抽氣系統。由常壓氮氣電漿噴流下游模型進行數值模擬,此模擬結果與實驗相符,皆在間距1 mm時放光強度突增,證明此熱流場模型耦合化學模型可用來模擬氮氣電漿反應。最後以電漿內部反應模型引入電子能量、電子密度函數,由可量測得電壓值及施加電功率與作為模型參數,模擬結果與實驗所量測得出口溫度做比較,在定性上有相同的趨勢。此模型可預測電漿頭內部的激發態物種量值、前驅物硝酸鋅熱分解形成氧化鋅以及內部混合氣體溫度分布。
zh_TW
dc.description.abstractThis study is a numerical simulation of the flow field on the deposition region and the atmospheric pressure plasma jet (APPJ) in the PECVD manufacturing process. The plasma reaction includes mutually species and different chemical reactions. When doing simulation, we utilized commercial software COMSOL Multiphysic5.2. The turbulent model is coupled with heat transfer model and chemical model.
At first we analysis the configuration of flow field effect on the deposition region in the PECVD process. This model could apply on designing a system to collect the by-production for linear atmosphere pressure plasma. In continue, to verify the plasma reaction model, contrast the experimental result with simulation result. Establishing an APPJ model to simulate the downstream of fluent .The simulation result is consistence with the experiment. The visual light sudden expansion which occur at the gap is 1 mm.
It could be proof this model is feasible. In the last model, we defined the specific function of electron temperature and electron density which was add measured voltage and applied power be model parameters. We compared the simulation results with experimental results, and found qualitatively similar in outlet temperature. This model could predict the excited species concentration, zinc nitrate precursor thermal decomposed to form zinc oxide and temperature distribution of mixing gas.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:15:06Z (GMT). No. of bitstreams: 1
ntu-105-R03522117-1.pdf: 5713833 bytes, checksum: 0d92164218e9e9d24b3a8248904f5b53 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 x
符號表 xi
第一章、緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文總覽 2
第二章、文獻回顧 3
2.1 電漿簡介 3
2.2 常壓噴流式電漿與PECVD簡介 4
2.3 環境空氣對氮氣電漿之影響 7
2.4 常壓電漿流場模擬與化學模擬 10
2.5 氧化鋅薄膜簡介與前驅物相關模擬 14
第三章、研究方法 17
3.1 數值分析軟體 17
3.2 流場模型 18
3.2.1 紊流模型 18
3.2.2 化學模型 21
3.3 流場幾何設定 29
3.3.1 常壓線型電漿冷流場 29
3.3.2 AP-PECVD鍍膜系統與環境氣流場 32
3.3.3 常壓噴流式電漿下游模型 34
3.3.4 PECVD腔體內部模型 36
3.4 模擬驗證 40
3.4.1 網格收斂測試 40
3.4.2 化學模型驗證-噴流式電漿下游外觀比較 44
3.4.3 與實驗溫度數據驗證 47
第四章、結果與討論 50
4.1 線型電漿模型模擬抽氣流場 50
4.1.1 線形電漿原始幾何流場分布 50
4.1.2 加入抽氣孔下游區流場分布與濃度場 52
4.1.3 抽氣效率 58
4.2 氮氣常壓電漿裝置外圍大氣之影響 59
4.3 氮氣常壓電漿下游之改變玻璃管套與底板間距 61
4.3.1 噴流下游區域流場分布情形 61
4.3.2 噴流下游區域放光強度變化 66
4.3.3 噴流下游區域氧氣濃度分布及溫度分布 69
4.4 前驅物與電漿物種之反應 72
4.4.1 PECVD內部熱流場 72
4.4.2 考慮電子碰撞反應之放光情形 75
4.4.3 考慮前驅物與氮氣電漿之反應 78
第五章、結論與未來展望 80
5.1結論 80
5.2未來展望 81
參考文獻 82
dc.language.isozh-TW
dc.subject硝酸鋅zh_TW
dc.subject電漿輔助化學氣相沉積zh_TW
dc.subject氮氣常壓噴流式電漿zh_TW
dc.subject數值模擬zh_TW
dc.subject前驅物zh_TW
dc.subjectPECVDen
dc.subjectzinc nitrateen
dc.subjectprecursoren
dc.subjectsimulationen
dc.subjectAPPJen
dc.title常壓PECVD系統氣流場與電漿含前驅物硝酸鋅反應之模擬研究zh_TW
dc.titleFlow Field and Plasma Reaction with Precursor Zinc Nitrate in a PECVD Systemen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王興華,魏大欽,陳建彰
dc.subject.keyword電漿輔助化學氣相沉積,氮氣常壓噴流式電漿,數值模擬,前驅物,硝酸鋅,zh_TW
dc.subject.keywordPECVD,APPJ,simulation,precursor,zinc nitrate,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201603445
dc.rights.note有償授權
dc.date.accepted2016-08-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
5.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved