請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49039完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙本秀(Pen-Hsiu Chao) | |
| dc.contributor.author | Pang-Ching Liu | en |
| dc.contributor.author | 劉邦卿 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:14:20Z | - |
| dc.date.available | 2017-08-25 | |
| dc.date.copyright | 2016-08-25 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-20 | |
| dc.identifier.citation | 1. Birch, H.L., C.T. Thorpe, and A.P. Rumian, Specialisation of extracellular matrix for function in tendons and ligaments. Muscles, Ligaments and Tendons Journal, 2013. 3(1): p. 12-22.
2. Buehler, M.J., Nanomechanics of collagen fibrils under varying cross-link densities: Atomistic and continuum studies. Journal of the Mechanical Behavior of Biomedical Materials, 2008. 1(1): p. 59-67. 3. Amis, A. and G. Dawkins, Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. Bone & Joint Journal, 1991. 73-B(2): p. 260-267. 4. Kaeding, C.C., et al., Allograft Versus Autograft Anterior Cruciate Ligament Reconstruction: Predictors of Failure From a MOON Prospective Longitudinal Cohort. Sports Health, 2011. 3(1): p. 73-81. 5. Bashur, C.A., et al., Effect of Fiber Diameter and Alignment of Electrospun Polyurethane Meshes on Mesenchymal Progenitor Cells. Tissue Engineering Part A, 2009. 15(9): p. 2435-2445. 6. Erisken, C., et al., Scaffold Fiber Diameter Regulates Human Tendon Fibroblast Growth and Differentiation. Tissue Engineering Part A, 2012. 19(3-4): p. 519-528. 7. Thayer, P.S., et al., Fiber/collagen composites for ligament tissue engineering: influence of elastic moduli of sparse aligned fibers on mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 2016. 104(8): p. 1894-1901. 8. Pen-hsiu Grace, C., H. Hsiang-Yi, and T. Hsiao-Yun, Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype. Biofabrication, 2014. 6(3): p. 035008. 9. You, Y., et al., Thermal interfiber bonding of electrospun poly(l-lactic acid) nanofibers. Materials Letters, 2006. 60(11): p. 1331-1333. 10. Ramaswamy, S., L.I. Clarke, and R.E. Gorga, Morphological, mechanical, and electrical properties as a function of thermal bonding in electrospun nanocomposites. Polymer, 2011. 52(14): p. 3183-3189. 11. Mikos, A.G., et al., Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. Journal of Biomedical Materials Research, 1993. 27(2): p. 183-189. 12. Hsiong, S.X., et al., Differentiation stage alters matrix control of stem cells. Journal of Biomedical Materials Research Part A, 2008. 85A(1): p. 145-156. 13. Rezakhaniha, R., et al., Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomechanics and Modeling in Mechanobiology, 2012. 11(3): p. 461-473. 14. Ribeiro, C., et al., Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. Science and Technology of Advanced Materials, 2011. 12(1). 15. Hernández Sánchez, F., et al., Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 2005. 6(6): p. 3283-3290. 16. Yasuniwa, M., et al., Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer, 2008. 49(7): p. 1943-1951. 17. Silver, F.H., I. Horvath, and D.J. Foran, Viscoelasticity of the Vessel Wall: The Role of Collagen and Elastic Fibers. 2001. 29(3): p. 279-302. 18. Ushiki, T., Collagen Fibers, Reticular Fibers and Elastic Fibers. A Comprehensive Understanding from a Morphological Viewpoint. Archives of Histology and Cytology, 2002. 65(2): p. 109-126. 19. Liu, W., et al., Generation of Electrospun Nanofibers with Controllable Degrees of Crimping Through a Simple, Plasticizer-Based Treatment. Advanced Materials, 2015. 27(16): p. 2583-2588. 20. Takahashi, K., et al., Crystal transformation from the α- to the β-form upon tensile drawing of poly(l-lactic acid). Polymer, 2004. 45(14): p. 4969-4976. 21. Cocca, M., et al., Influence of crystal polymorphism on mechanical and barrier properties of poly(l-lactic acid). European Polymer Journal, 2011. 47(5): p. 1073-1080. 22. Tábi, T., S. Hajba, and J.G. Kovács, Effect of crystalline forms (α′ and α) of poly(lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties. European Polymer Journal, 2016. 82: p. 232-243. 23. Han, Woojin M., et al., Macro- to Microscale Strain Transfer in Fibrous Tissues is Heterogeneous and Tissue-Specific. Biophysical Journal, 2013. 105(3): p. 807-817. 24. Fang, F. and S.P. Lake, Multiscale strain analysis of tendon subjected to shear and compression demonstrates strain attenuation, fiber sliding, and reorganization. Journal of Orthopaedic Research, 2015. 33(11): p. 1704-1712. 25. Yoon, J.H. and J. Halper, Tendon proteoglycans: Biochemistry and function. Journal of Musculoskeletal Neuronal Interactions, 2005. 5(1): p. 22-34. 26. Schönherr, E., et al., Decorin-Type I Collagen Interaction: PRESENCE OF SEPARATE CORE PROTEIN-BINDING DOMAINS. Journal of Biological Chemistry, 1995. 270(15): p. 8877-8883. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49039 | - |
| dc.description.abstract | 天然韌帶是由許多具有平行排列結構的膠原蛋白纖維所組成的,而我們先前的研究指出,將細胞種在此種結構的纖維支架可以讓細胞表現出較好的細胞外間質分泌,但是天然韌帶不單單是只有許多平行的膠原蛋白纖維所組成的,纖維在組織中並且互相交聯補強其結構,我們的實驗主要是做出具有交聯性質的纖維支架和探討其機械性質與細胞生理性質的影響。結果顯示出交聯的電紡纖維在垂直方向的機械性質有提升同時有保留原本電紡纖維的排列性,共軛焦顯微鏡顯示出細胞種在交聯的材料並不會改變原本的細胞型態,但在受到機械刺激後,tenascin-C 的基因表現有所改變,代表交聯後的纖維結構在受到拉伸時的反應不同,這說明了交聯的結構會降低在微環境中的形變。未來希望藉由調整電紡纖維的孔隙度和降低交聯的溫度來達到更理想的機械性質來研究細胞的表現。 | zh_TW |
| dc.description.abstract | Native ligament is formed by aligned wavy collagen fiber. Previous study has shown that cells have better ECM production on biomimetic wavy electrospun fiber scaffold. But only having architecture similarity is insufficient. Collagen fibers are cross-linked in native tissue which contribute to material’s properties. The aim of this study is to generate bonding fiber and investigate the influence of biomimetic bonded electropsun fibers on material’s mechanical properties and cell physiology. Our results show that bonded fiber has better mechanical properties in transverse stretch without changes in fiber scaffold morphology. Confocal image and mRNA expression also shows that cell has no significant change in morphology and phenotype in bonding fiber. And gene expression response of tenascin-C to mechanical stimulation is different in bond group, which means the bonded fiber has different strain transfer in loading. Future studies will change porosity of PLLA fiber and reduce bonded temperature to optimized mechanical properties of the scaffold and investigate cell’s phenotype. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:14:20Z (GMT). No. of bitstreams: 1 ntu-105-R03548036-1.pdf: 1833556 bytes, checksum: bbca0fb8aaaebce0821b2cabecb0c1a5 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | List of Figure i
中文摘要 ii Abstract iii Chapter 1 Introduction 1 1.1 Research objective 1 1.2 Ligament Tissue Engineering 1 1.3 Electrospinning 2 1.4 Bonding for Electrospun Fibers 2 1.5 Mechanical Stimulation 3 Chapter 2 Material and Method 4 2.1 Scaffold Preparation 4 2.2 Bonding Scaffold Preparation 5 2.3 Characterization of Electrospun fiber 5 2.4 Polymer characterization 6 2.6 Cell culture 7 2.7 RNA Extraction 7 2.8 Quantification of mRNA Levels 7 2.9 Cell Morphology 8 2.10 Statistical analysis 8 Chapter 3 Result 9 3.1 Mechanical Properties 9 3.2 Fiber Waviness Analysis 9 3.3 Cell morphology 10 3.4 Substrate and dynamic loading effects cell phenotype 10 3.5 Thermal analysis 11 Chapter 4 Disscussion 12 List of Figure Figure 1. Definition of straightness parameter of fibers……………….................14 Figure 2. Stress-strain curve of straight and wavy fiber with and without bonding, toe region decrease in wavy-bonding group. 16 Figure 3. Mechanical properties of the fiber after treatment. 18 Figure 4. Waviness of each group. 19 Figure 5. Confocal image of cell morphology. 20 Figure 6. Cell morphology at original control group and PVA washout group within mRNA gene expression. 21 Figure 7. Tenascin-C and Collagen Type III mRNA expression of control and cyclic loading. 22 Figure 8. DSC heating scans in bonding group and non-bonding group at 10°C/ min. 23 Figure 9. PLLA electrospun fiber being stretched in non-bonding and bonding group. 24 | |
| dc.language.iso | zh-TW | |
| dc.subject | 交聯 | zh_TW |
| dc.subject | 組織工程 | zh_TW |
| dc.subject | 韌帶 | zh_TW |
| dc.subject | 靜電紡絲 | zh_TW |
| dc.subject | crosslinking | en |
| dc.subject | mechanobiology | en |
| dc.subject | tissue engineering | en |
| dc.subject | bonding | en |
| dc.subject | electrospun fiber | en |
| dc.title | 交聯電紡纖維對機械性質與力生物學的影響 | zh_TW |
| dc.title | Crosslinked Electrospun Fibers Change Scaffold Mechanics and Mechanobiology | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭柏齡(Po-Ling Kuo),游佳欣(Jia-Shing Yu) | |
| dc.subject.keyword | 靜電紡絲,組織工程,交聯,韌帶, | zh_TW |
| dc.subject.keyword | electrospun fiber,crosslinking,bonding,tissue engineering,mechanobiology, | en |
| dc.relation.page | 26 | |
| dc.identifier.doi | 10.6342/NTU201603281 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
