Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49036
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor梁國淦
dc.contributor.authorDao-Ming Changen
dc.contributor.author張道明zh_TW
dc.date.accessioned2021-06-15T11:14:16Z-
dc.date.available2017-09-08
dc.date.copyright2016-09-08
dc.date.issued2016
dc.date.submitted2016-08-21
dc.identifier.citation1. Nelson, L.E., et al., The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nature Neuroscience, 2002. 5(10): 979-984.
2. Sukhotinsky, I., et al., Projections from the mesopontine tegmental anesthesia area to regions involved in pain modulation. Journal of Chemical Neuroanatomy, 2006. 32(2-4): 159-178.
3. Hentschke, H., C. Schwarz, and B. Antkowiak, Neocortex is the major target of sedative concentrations of volatile anaesthetics: strong depression of firing rates and increase of GABA(A) receptor-mediated inhibition. European Journal of Neuroscience, 2005. 21(1): 93-102.
4. Jenkins, A., et al., Evidence for a common binding cavity for three general anesthetics within the GABA(A) receptor. Journal of Neuroscience, 2001. 21(6): RC136.
5. Berg, J.M., J.L. Tymoczko, and L. Stryer, Biochemistry. 7th ed. 2012, New York: W.H. Freeman. xxxii, 1098, 30, 48
6. Wang, A., et al., Fast Stiffness Mapping of Cells Using High-Bandwidth Atomic Force Microscopy. Acs Nano, 2016. 10(1): 257-264.
7. Mombelli, E., et al., Hydrogen-bonding propensities of sphingomyelin in solution and in a bilayer assembly: a molecular dynamics study. Biophysical Journal, 2003. 84(3): p. 1507-1517.
8. Frisz, J.F., et al., Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Proceedings of the National Academy of Sciences, 2013. 110(8): E613–E622.
9. Jensen, M.O. and O.G. Mouritsen, Lipids do influence protein function - the hydrophobic matching hypothesis revisited. Biochimica Et Biophysica Acta-Biomembranes, 2004. 1666(1-2): 205-226.
10. Singer, S.J. and G.L. Nicolson, Fluid Mosaic Model of Structure of Cell-Membranes. Science, 1972. 175(4023): 720-731.
11. Nicolson, G.L., The Fluid-Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochimica Et Biophysica Acta-Biomembranes, 2014. 1838(6): 1451-1466.
12. Karnovsky, M.J., et al., The Concept of Lipid Domains in Membranes. Journal of Cell Biology, 1982. 94(1): 1-6.
13. Berridge, M.J., Inositol Trisphosphate and Diacylglycerol - 2 Interacting 2nd Messengers. Annual Review of Biochemistry, 1987. 56: 159-193.
14. Pagano, R.E. and R.G. Sleight, Emerging Problems in the Cell Biology of Lipids. Trends in Biochemical Sciences, 1985. 10(11): 421-425.
15. Simons, K. and S.D. Fuller, Cell-Surface Polarity in Epithelia. Annual Review of Cell Biology, 1985. 1: 243-288.
16. Simons, K. and G. Van Meer, Lipid Sorting in Epithelial-Cells. Biochemistry, 1988. 27(17): 6197-6202.
17. van Meer, G., et al., Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J Cell Biol, 1987. 105(4): 1623-1635.
18. Lipsky, N.G. and R.E. Pagano, Sphingolipid metabolism in cultured fibroblasts: microscopic and biochemical studies employing a fluorescent ceramide analogue. Proc Natl Acad Sci U S A, 1983. 80(9): 2608-2612.
19. Simons, K. and H. Virta, Perforated MDCK cells support intracellular transport. The EMBO Journal, 1987. 6(8): 2241-2247.
20. Brown, D.A. and J.K. Rose, Sorting of Gpi-Anchored Proteins to Glycolipid-Enriched Membrane Subdomains during Transport to the Apical Cell-Surface. Cell, 1992. 68(3): 533-544.
21. Danielsen, E.M. and B. Vandeurs, A Transferrin-Like Gpi-Linked Iron-Binding Protein in Detergent-Insoluble Noncaveolar Microdomains at the Apical Surface of Fetal Intestinal Epithelial-Cells. Journal of Cell Biology, 1995. 131(4): 939-950.
22. Resh, M.D., Myristylation and palmitylation of Src family members: the fats of the matter. Cell, 1994. 76(3): 411-413.
23. Skibbens, J.E., M.G. Roth, and K.S. Matlin, Differential Extractability of Influenza-Virus Hemagglutinin during Intracellular-Transport in Polarized Epithelial-Cells and Nonpolar Fibroblasts. Journal of Cell Biology, 1989. 108(3): 821-832.
24. Parton, R.G., Caveolae and caveolins. Current Opinion in Cell Biology, 1996. 8(4): 542-548.
25. Keller, P. and K. Simons, Cholesterol is required for surface transport of influenza virus hemagglutinin. Journal of Cell Biology, 1998. 140(6): 1357-1367.
26. Silvius, J.R., Cholesterol Modulation of Lipid Intermixing in Phospholipid and Glycosphingolipid Mixtures - Evaluation Using Fluorescent Lipid Probes and Brominated Lipid Quenchers. Biochemistry, 1992. 31(13): 3398-3408.
27. Sankaram, M.B. and T.E. Thompson, Interaction of Cholesterol with Various Glycerophospholipids and Sphingomyelin. Biochemistry, 1990. 29(47): 10670-5.
28. Simons, K. and E. Ikonen, Functional rafts in cell membranes. Nature, 1997. 387(6633): 569-572.
29. Deguchi, S., T. Ohashi, and M. Sato, Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells. Journal of Biomechanics, 2006. 39(14): 2603-2610.
30. Bennett, V. and D.N. Lorenzo, Spectrin- and ankyrin-based membrane domains and the evolution of vertebrates. Currrent Topics in Membranes, 2013. 72: 1-37.
31. Bennett, V. and D.N. Lorenzo, An Adaptable Spectrin/Ankyrin-Based Mechanism for Long-Range Organization of Plasma Membranes in Vertebrate Tissues. Currrent Topics in Membranes, 2016. 77: 143-84.
32. Lodish, H.F., Molecular cell biology. 7th ed. 2013, New York: W.H. Freeman and Co. xxxiii, 1154, [58]
33. Fujiwara, T.K., et al., Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane. Molecular Biology of the Cell, 2016. 27(7): 1101-19.
34. Sako, Y. and A. Kusumi, Barriers for Lateral Diffusion of Transferrin Receptor in the Plasma-Membrane as Characterized by Receptor Dragging by Laser Tweezers - Fence Versus Tether. Journal of Cell Biology, 1995. 129(6): 1559-1574.
35. Fujiwara, T., et al., Phospholipids undergo hop diffusion in compartmentalized cell membrane. Journal of Cell Biology, 2002. 157(6): 1071-81.
36. Graham, F.L., et al., Characteristics of a human cell line transformed by DNA from human adenovirus type 5. Journal of General Virology, 1977. 36(1): 59-74.
37. Shaw, G., et al., Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB Journal, 2002. 16(6): 869-871.
38. Binnig, G., et al., Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters, 1982. 49(1): 57-61.
39. Chen, C.J. and Oxford University Press., Introduction to Scanning Tunneling Microscopy Second Edition. 2007, Oxford University Press: Oxford. p. 432
40. Binnig, G., C.F. Quate, and C. Gerber, Atomic Force Microscope. Physical Review Letters, 1986. 56(9): 930-933.
41. Meyer, G. and N.M. Amer, Novel Optical Approach to Atomic Force Microscopy. Applied Physics Letters, 1988. 53(12): 1045-1047.
42. Sader, J.E., et al., Spring constant calibration of atomic force microscope cantilevers of arbitrary shape. Review of Scientific Instruments, 2012. 83(10).
43. Alsteens, D., et al., Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nature Communications, 2013. 4: 2926.
44. Hertz, H., Ueber die Beruhrung fester elastischer Korper. Journal fur die reine und angewandte Mathematik, 1882. 92: 156-171.
45. Dokukin M , E., V. Guz N , and I. Sokolov, Quantitative Study of the Elastic Modulus of Loosely Attached Cells in AFM Indentation Experiments. Biophysical Journal, 2013. 104(10): 2123-31.
46. Atilla-Gokcumen, G.E., et al., Dividing Cells Regulate Their Lipid Composition and Localization. Cell, 2014. 156(3): 428-439.
47. Roduit, C., et al., Stiffness Tomography by Atomic Force Microscopy. Biophysical Journal, 2009. 97(2): 674-677.
48. Whiting, P.J., et al., Molecular and functional diversity of the expanding GABA-A receptor gene family. Molecular and Functional Diversity of Ion Channels and Receptors, 1999. 868: 645-653.
49. Farrant, M. and Z. Nusser, Variations on an inhibitory theme: Phasic and tonic activation of GABA(A) receptors. Nature Reviews Neuroscience, 2005. 6(3): 215-229.
50. Garcia, P.S., S.E. Kolesky, and A. Jenkins, General anesthetic actions on GABA(A) receptors. Current Neuropharmacology, 2010. 8(1): 2-9.
51. Richter, L., et al., Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. Nature Chemical Biology, 2012. 8(5): 455-464.
52. Vithlani, M., M. Terunuma, and S.J. Moss, The dynamic modulation of GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory synapses. Physiological Reviews, 2011. 91(3): 1009-1022.
53. Georgiou, C.D., et al., Mechanism of Coomassie brilliant blue G-250 binding to proteins: a hydrophobic assay for nanogram quantities of proteins. Analytical and Bioanalytical Chemistry, 2008. 391(1): 391-403.
54. Li, J.K., R.M.A. Sullan, and S. Zou, Atomic Force Microscopy Force Mapping in the Study of Supported Lipid Bilayers. Langmuir, 2011. 27(4): 1308-1313.
55. Orsini, F., et al., Atomic force microscopy imaging of lipid rafts of human breast cancer cells. Biochimica et Biophysica Acta, 2012. 1818(12): 2943-2949.
56. Cai, M.J., et al., Direct Evidence of Lipid Rafts by in situ Atomic Force Microscopy. Small, 2012. 8(8): 1243-1250.
57. Roduit, C., et al., Stiffness tomography exploration of living and fixed macrophages. Journal of Molecular Recognition, 2012. 25(5): 241-246.
58. Vichare, S., M.M. Inamdar, and S. Sen, Influence of cell spreading and contractility on stiffness measurements using AFM. Soft Matter, 2012. 8(40): 10464-10471.
59. Rosner, M., K. Schipany, and M. Hengstschlager, Merging high-quality biochemical fractionation with a refined flow cytometry approach to monitor nucleocytoplasmic protein expression throughout the unperturbed mammalian cell cycle. Nature Protocols, 2013. 8(3): 602-626.
60. Tanaka, K.A., et al., Membrane molecules mobile even after chemical fixation. Nature Methods, 2010. 7(11): 865-866.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49036-
dc.description.abstract於本研究中,為了量測貼覆型真核細胞的細胞膜力學構造,我建立了基於原子力顯微鏡 (Atomic force microscopy, AFM) 之測量與分析方法。由於量測時細胞膜和其底下細胞骨架可能同時被量測到,我利用與前人不同之分析方法,利用將力圖漸進分段分析之方式得到細胞表面之硬度分布。利用螢光標定位於細胞膜之膜蛋白或醣脂質後,利用將相同位置之螢光圖與硬度分佈相疊合的方式,將分子和硬度之分布相關聯。利用此方法,我測量了位於醣脂質 monosialotetrahexosyl- ganglioside (GM1) 以及膜蛋白GABAA subtype (alpha1)2(beta2)2 gamma2受體周圍之細胞膜硬度及高度,發現醣脂質 GM1 以及膜蛋白GABAA subtype (alpha1)2(beta2)2gamma2受體所在之位置,相較於周圍皆於較硬且較高。zh_TW
dc.description.abstractIn this study, I established an atomic force microscopy-based method to study the mechanical structure of the membrane of adherent eukaryotic cells. Since both the membrane and the underneath cytoskeletons could be simultaneously measured, I adapt a new analytical method for the force curve analysis. With a progressive truncation-refitting force curve analysis, the distribution of surface stiffness can be calculated. After the fluorescence labeling of sphingolipids or membrane protein, I correlate the stiffness and the molecular distribution by overlapping the fluorescence image with the stiffness distribution. With this method, I studied the membrane on the glycosphingolipid monosialotetrahexosylganglio (GM1) and the membrane around the membrane protein, gamma-aminobutyric acid type A receptor (GABAA receptor), subtype (alpha1)2(beta2)2 gamma2. I observed that both the GM1 and the GABAA receptor, subtype (alpha1)2(beta2)2 gamma2, are partitioned into a stiffer and higher domain than adjacent region.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:14:16Z (GMT). No. of bitstreams: 1
ntu-105-R03b22043-1.pdf: 6168111 bytes, checksum: 3f2249467ec6654382d6637bb74cd362 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 I
謝誌 II
Contents III
List of figures V
List of table VII
中文摘要 VIII
Abstract IX
Chapter 1. Introduction 1
1.1. Membranes and general anesthesia 1
1.2. Mammalian plasma membrane structure 2
1.2.1. Major components of biological plasma membrane 2
1.2.2. Lipid raft hypothesis 7
1.2.3. Cytoskeleton-membrane interaction: fences-and-pickets model 13
1.3. HEK293T 16
1.4. AFM stiffness tomography 17
1.4.1. Working principle of AFM 17
1.4.2. Characteristics of a force-distance curve 21
1.4.3. Hertzian model: deriving stiffness from force-indentation curve 22
1.4.4. Stiffness tomography 24
1.5. GABAA receptors 27
1.6. Work plan 28
Chapter 2. Materials and methods 30
2.1 Cell Culture 30
2.2 Combined FL-AFM method with cytoskeleton, membrane (GM1) and protein (GABAA-R) labeling 30
2.2.1. Fluorescent Immunocytochemistry 31
2.2.2. AFM measurements 32
2.2.3. Data processing 32
2.3. Construction of AFM-ST algorithm 33
2.4. Exogenous expression of GABAA-R 34
2.4.1. Plasmid maintenance 34
2.4.2. Cell transfection with calcium phosphate method 35
2.4.3. Western blot 36
Chapter 3. Results 38
3.1 Expression level and spatial distribution of the GABAA receptor with a1b2g2 subunits 38
3.2 Parameters for HEK293T force mapping 42
3.3 Constructing the stiffness tomography (ST) algorithm 46
3.4 Correlating the distribution of GM1 molecules with surface stiffness 48
3.5 Membrane mechanical property around the GABAA receptor 54
Chapter 4. Discussions and conclusions 55
References 59
Appendices 63
Appendix 1. Calibration of the indentation from z-length and deflection 63
Appendix 2. The filter sets used in epifluorescence microscope 64
Appendix 3. The code of mathematica-based stiffness tomography 65
Appendix 4. The slides for thesis oral defense 66
dc.language.isoen
dc.subject硬度斷層成像zh_TW
dc.subjectforce volumezh_TW
dc.subject膜硬度zh_TW
dc.subjectGABA(A) 受體zh_TW
dc.subjectmembrane stiffnessen
dc.subjectforce volumeen
dc.subjectGABA(A) receptoren
dc.subjectstiffness tomographyen
dc.title利用基於原子力顯微鏡之硬度斷層成像探測 HEK293T 細胞之膜力學構造zh_TW
dc.titleProbing the Membrane Mechanical Structure of HEK293T Cell by AFM-based Stiffness Tomographyen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee魏培坤,周百里,余慈顏,楊啟伸
dc.subject.keywordforce volume,膜硬度,硬度斷層成像,GABA(A) 受體,zh_TW
dc.subject.keywordforce volume,membrane stiffness,stiffness tomography,GABA(A) receptor,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201602741
dc.rights.note有償授權
dc.date.accepted2016-08-21
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
Appears in Collections:生化科技學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
6.02 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved