請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49034完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光(Chih-Kung Lee) | |
| dc.contributor.author | Yi-Ching Kuo | en |
| dc.contributor.author | 郭宜靜 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:14:13Z | - |
| dc.date.available | 2019-11-02 | |
| dc.date.copyright | 2016-11-02 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-20 | |
| dc.identifier.citation | [1] United Nations Population Fund, http://www.unfpa.org/.
[2] World Health Organization, http://www.who.int/en/. [3] F. W. Scheller, et al., 'Research and development in biosensors,' Current Opinion in Biotechnology, vol. 12, pp. 35-40, 2001. [4] J. V. Rushworth and N. A. Hirst, Impedimetric biosensors for medical applications: current progress and challenges: Momentum Press, 2013. [5] J. H. Luong, et al., 'Biosensor technology: technology push versus market pull,' Biotechnology Advances, vol. 26, pp. 492-500, 2008. [6] L. C. Clark and C. Lyons, 'Electrode systems for continuous monitoring in cardiovascular surgery,' Annals of the New York Academy of sciences, vol. 102, pp. 29-45, 1962. [7] S. J. Updike and G. P. Hicks, 'The Enzyme Electrode,' nature, vol. 214, pp. 986-988, 1967. [8] M. H. Keyes, et al., 'Glucose analysis utilizing immobilized enzymes,' Enzyme and Microbial Technology, vol. 1, pp. 91-94, 1979/04/01 1979. [9] U. Jönsson, et al., 'Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,' BioTechniques, vol. 11, pp. 620-627, 1991. [10] W. Zhang and G. Li, 'Third-Generation Biosensors Based on the Direct Electron Transfer of Proteins,' Analytical Sciences, vol. 20, pp. 603-609, 2004. [11] P. J. Conroy, et al., 'Antibody production, design and use for biosensor-based applications,' in Seminars in cell & developmental biology, 2009, pp. 10-26. [12] M. Zourob, et al., Principles of bacterial detection: biosensors, recognition receptors and microsystems: Springer Science & Business Media, 2008. [13] Y. Krishnan and F. C. Simmel, 'Nucleic Acid Based Molecular Devices,' Angewandte Chemie International Edition, vol. 50, pp. 3124-3156, 2011. [14] C. Tuerk and L. Gold, 'Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,' Science, vol. 249, pp. 505-510, 1990. [15] A. D. Ellington and J. W. Szostak, 'In vitro selection of RNA molecules that bind specific ligands,' nature, vol. 346, pp. 818-822, 1990. [16] S. D. Jayasena, 'Aptamers: an emerging class of molecules that rival antibodies in diagnostics,' Clinical chemistry, vol. 45, pp. 1628-1650, 1999. [17] J. Homola, et al., 'Surface plasmon resonance sensors: review,' Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999. [18] J. Homola, 'Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,' Chemical Reviews, vol. 108, pp. 462-493, 2008/02/01 2008. [19] E. Hutter and J. H. Fendler, 'Exploitation of Localized Surface Plasmon Resonance,' Advanced Materials, vol. 16, pp. 1685-1706, 2004. [20] K. M. Mayer and J. H. Hafner, 'Localized Surface Plasmon Resonance Sensors,' Chemical Reviews, vol. 111, pp. 3828-3857, 2011/06/08 2011. [21] X. Fan, et al., 'Sensitive optical biosensors for unlabeled targets: A review,' Analytica Chimica Acta, vol. 620, pp. 8-26, 2008. [22] S. Mizukami, et al., 'A Fluorescent Anion Sensor That Works in Neutral Aqueous Solution for Bioanalytical Application,' Journal of the American Chemical Society, vol. 124, pp. 3920-3925, 2002/04/01 2002. [23] P. Jiang and Z. Guo, 'Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors,' Coordination Chemistry Reviews, vol. 248, pp. 205-229, 2004. [24] G. H. Cross, et al., 'A new quantitative optical biosensor for protein characterisation,' Biosensors and Bioelectronics, vol. 19, pp. 383-390, 2003. [25] A. Janshoff, et al., 'Piezoelectric Mass-Sensing Devices as Biosensors—An Alternative to Optical Biosensors?,' Angewandte Chemie International Edition, vol. 39, pp. 4004-4032, 2000. [26] K. A. Marx, 'Quartz Crystal Microbalance: A Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution−Surface Interface,' Biomacromolecules, vol. 4, pp. 1099-1120, 2003/09/01 2003. [27] M. V. Voinova, et al., '‘Missing mass’ effect in biosensor's QCM applications,' Biosensors and Bioelectronics, vol. 17, pp. 835-841, 2002. [28] R. Raiteri, et al., 'Micromechanical cantilever-based biosensors,' Sensors and Actuators B: Chemical, vol. 79, pp. 115-126, 2001. [29] C. Ziegler, 'Cantilever-based biosensors,' Analytical and Bioanalytical Chemistry, vol. 379, pp. 946-959, 2004// 2004. [30] P. S. Waggoner and H. G. Craighead, 'Micro- and nanomechanical sensors for environmental, chemical, and biological detection,' Lab on a Chip, vol. 7, pp. 1238-1255, 2007. [31] Y. Cui, et al., 'Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,' Science, vol. 293, pp. 1289-1292, 2001-08-17 00:00:00 2001. [32] F. Patolsky, et al., 'Nanowire-Based Biosensors,' Analytical Chemistry, vol. 78, pp. 4260-4269, 2006/07/01 2006. [33] T. G. Drummond, et al., 'Electrochemical DNA sensors,' Nat Biotech, vol. 21, pp. 1192-1199, 2003. [34] J. Wang, 'Electrochemical Glucose Biosensors,' Chemical Reviews, vol. 108, pp. 814-825, 2008/02/01 2008. [35] Y. Shao, et al., 'Graphene Based Electrochemical Sensors and Biosensors: A Review,' Electroanalysis, vol. 22, pp. 1027-1036, 2010. [36] C.-S. Chen, et al., 'Development of a label-free impedance biosensor for detection of antibody–antigen interactions based on a novel conductive linker,' Biosensors and Bioelectronics, vol. 26, pp. 3072-3076, 2011. [37] D. Grieshaber, et al., 'Electrochemical biosensors-sensor principles and architectures,' Sensors, vol. 8, pp. 1400-1458, 2008. [38] F. Lisdat and D. Schäfer, 'The use of electrochemical impedance spectroscopy for biosensing,' Analytical and Bioanalytical Chemistry, vol. 391, pp. 1555-1567, 2008. [39] O. Pänke, et al., 'Impedance spectroscopy and biosensing,' in Biosensing for the 21st Century, ed: Springer, 2007, pp. 195-237. [40] P. Kongsuphol, et al., 'EIS-based biosensor for ultra-sensitive detection of TNF-α from non-diluted human serum,' Biosensors and Bioelectronics, vol. 61, pp. 274-279, 2014. [41] E. B. Bahadır and M. K. Sezgintürk, 'Applications of electrochemical immunosensors for early clinical diagnostics,' Talanta, vol. 132, pp. 162-174, 2015. [42] K. I. Ozoemena, et al., 'Electron transfer dynamics across self-assembled N-(2-mercaptoethyl) octadecanamide/mycolic acid layers: impedimetric insights into the structural integrity and interaction with anti-mycolic acid antibodies,' Physical Chemistry Chemical Physics, vol. 12, pp. 345-357, 2010. [43] M. Vestergaard, et al., 'An overview of label-free electrochemical protein sensors,' Sensors, vol. 7, pp. 3442-3458, 2007. [44] A. Lasia, 'Electrochemical impedance spectroscopy and its applications,' in Modern aspects of electrochemistry, ed: Springer, 2002, pp. 143-248. [45] M. A. Cooper, 'Optical biosensors in drug discovery,' Nature Reviews Drug Discovery, vol. 1, pp. 515-528, 2002. [46] G. Gauglitz, 'Direct optical detection in bioanalysis: an update,' Analytical and Bioanalytical Chemistry, vol. 398, pp. 2363-2372, 2010. [47] J. Homola, et al., 'Surface plasmon resonance sensors: review,' Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999. [48] A. Janshoff, et al., 'Piezoelectric Mass‐Sensing Devices as Biosensors—An Alternative to Optical Biosensors?,' Angewandte Chemie International Edition, vol. 39, pp. 4004-4032, 2000. [49] H. Muramatsu, et al., 'Piezoelectric crystal biosensor modified with protein A for determination of immunoglobulins,' Analytical Chemistry, vol. 59, pp. 2760-2763, 1987. [50] C. Ziegler, 'Cantilever-based biosensors,' Analytical and Bioanalytical Chemistry, vol. 379, pp. 946-959, 2004. [51] N. V. Lavrik, et al., 'Cantilever transducers as a platform for chemical and biological sensors,' Review of scientific instruments, vol. 75, pp. 2229-2253, 2004. [52] G. A. Zelada-Guillén, et al., 'Ultrasensitive and real-time detection of proteins in blood using a potentiometric carbon-nanotube aptasensor,' Biosensors and Bioelectronics, vol. 41, pp. 366-371, 2013. [53] P. Singh, et al., 'Biomedical Perspective of Electrochemical Nanobiosensor,' Nano-Micro Letters, vol. 8, pp. 193-203, 2016. [54] M. Gerard, et al., 'Application of conducting polymers to biosensors,' Biosensors and Bioelectronics, vol. 17, pp. 345-359, 2002. [55] C. Berggren, et al., 'Capacitive biosensors,' Electroanalysis, vol. 13, pp. 173-180, 2001. [56] J. S. Daniels and N. Pourmand, 'Label‐free impedance biosensors: Opportunities and challenges,' Electroanalysis, vol. 19, pp. 1239-1257, 2007. [57] A. Newman, et al., 'The capacitive affinity sensor: a new biosensor,' in Proceedings of the Second International Meeting on Chemical Sensors, Bordeaux, France, 1986, pp. 596-598. [58] R. F. Taylor, et al., 'An acetylcholine receptor-based biosensor for the detection of cholinergic agents,' Analytica Chimica Acta, vol. 213, pp. 131-138, 1988. [59] L. Yang and R. Bashir, 'Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria,' Biotechnology Advances, vol. 26, pp. 135-150, 2008. [60] A. Bardea, et al., 'Sensing and amplification of oligonucleotide-DNA interactions by means of impedance spectroscopy: a route to a Tay–Sachs sensor,' Chemical Communications, pp. 21-22, 1999. [61] L. Yang, et al., 'Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of Escherichia c oli O157: H7,' Analytical Chemistry, vol. 76, pp. 1107-1113, 2004. [62] M. Jie, et al., 'An electrochemical impedance immunoanalytical method for detecting immunological interaction of human mammary tumor associated glycoprotein and its monoclonal antibody,' Electrochemistry communications, vol. 1, pp. 425-428, 1999. [63] H. Chen, et al., 'An electrochemical impedance immunosensor with signal amplification based on Au-colloid labeled antibody complex,' Sensors and Actuators B: Chemical, vol. 117, pp. 211-218, 2006. [64] Z. Chen, et al., 'Impedance immunosensor based on receptor protein adsorbed directly on porous gold film,' Analytica Chimica Acta, vol. 553, pp. 190-195, 2005. [65] X. Fang, et al., 'Integrated biochip for label-free and real-time detection of DNA amplification by contactless impedance measurements based on interdigitated electrodes,' Biosensors and Bioelectronics, vol. 44, pp. 241-247, 2013. [66] P. Van Gerwen, et al., 'Nanoscaled interdigitated electrode arrays for biochemical sensors,' Sensors and Actuators B: Chemical, vol. 49, pp. 73-80, 1998. [67] K. Hayashi, et al., 'Development of nanoscale interdigitated array electrode as electrochemical sensor platform for highly sensitive detection of biomolecules,' Journal of The Electrochemical Society, vol. 155, pp. J240-J243, 2008. [68] D. Pech, et al., 'Influence of the configuration in planar interdigitated electrochemical micro-capacitors,' Journal of Power Sources, vol. 230, pp. 230-235, 2013. [69] X. Tang, et al., 'A new interdigitated array microelectrode-oxide-silicon sensor with label-free, high sensitivity and specificity for fast bacteria detection,' Sensors and Actuators B: Chemical, vol. 156, pp. 578-587, 2011. [70] C. RoyChaudhuri and R. D. Das, 'A biomolecule compatible electrical model of microimpedance affinity biosensor for sensitivity improvement in cell detection,' Sensors and Actuators A: Physical, vol. 157, pp. 280-289, 2010. [71] K. Aoki, et al., 'Quantitative analysis of reversible diffusion-controlled currents of redox soluble species at interdigitated array electrodes under steady-state conditions,' Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 256, pp. 269-282, 1988. [72] W. Olthuis, et al., 'Theoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensors,' Sensors and Actuators B: Chemical, vol. 24, pp. 252-256, 1995. [73] A. E. Cohen and R. R. Kunz, 'Large-area interdigitated array microelectrodes for electrochemical sensing,' Sensors and Actuators B: Chemical, vol. 62, pp. 23-29, 2000. [74] J. Min and A. J. Baeumner, 'Characterization and optimization of interdigitated ultramicroelectrode arrays as electrochemical biosensor transducers,' Electroanalysis, vol. 16, pp. 724-729, 2004. [75] S. K. Kim, et al., 'Fabrication of comb interdigitated electrodes array (IDA) for a microbead-based electrochemical assay system,' Biosensors and Bioelectronics, vol. 20, pp. 887-894, 2004. [76] M. Webster, et al., 'Computer aided modelling of an interdigitated microelectrode array impedance biosensor for the detection of bacteria,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 16, pp. 1356-1363, 2009. [77] M. S. Mannoor, et al., 'Nanogap dielectric spectroscopy for aptamer-based protein detection,' Biophysical journal, vol. 98, pp. 724-732, 2010. [78] K. V. Singh, et al., '3D nanogap interdigitated electrode array biosensors,' Analytical and Bioanalytical Chemistry, vol. 397, pp. 1493-1502, 2010. [79] B. B. Narakathu, et al., 'Improved detection limits of toxic biochemical species based on impedance measurements in electrochemical biosensors,' Biosensors and Bioelectronics, vol. 26, pp. 923-928, 2010. [80] N. Couniot, et al., 'Signal-to-noise ratio optimization for detecting bacteria with interdigitated microelectrodes,' Sensors and Actuators B: Chemical, vol. 189, pp. 43-51, 2013. [81] W. Ochiai, et al., 'Optimization of electrode configuration in large GaInN light‐emitting diodes,' physica status solidi (c), vol. 6, pp. 1416-1419, 2009. [82] D. G. Sanderson and L. B. Anderson, 'Filar electrodes: steady-state currents and spectroelectrochemistry at twin interdigitated electrodes,' Analytical Chemistry, vol. 57, pp. 2388-2393, 1985. [83] B. Fosset, et al., 'Theory and experiment for the collector-generator triple-band electrode,' Analytical Chemistry, vol. 63, pp. 1403-1408, 1991. [84] B. Fosset, et al., 'Use of conformal maps to model the voltammetric response of collector-generator double-band electrodes,' Analytical Chemistry, vol. 63, pp. 306-314, 1991. [85] D. Antiohos, et al., 'Carbon Nanotubes for Energy Applications,' Syntheses and Applications of Carbon Nanotubes and Their Composites, pp. 496-534, 2013. [86] B.-Y. Chang and S.-M. Park, 'Electrochemical impedance spectroscopy,' Annual Review of Analytical Chemistry, vol. 3, pp. 207-229, 2010. [87] T. J. VanderNoot, 'Limitations in the analysis of ac impedance data with poorly separated faradaic and diffusional processes,' Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 300, pp. 199-210, 1991/02/11 1991. [88] G. Binnig, et al., 'Atomic force microscope,' Physical Review Letters, vol. 56, p. 930, 1986. [89] Bruker corporation, http://www.bruker.com/. [90] J. S. Daniels and N. Pourmand, 'Label-Free Impedance Biosensors: Opportunities and Challenges,' Electroanalysis, vol. 19, pp. 1239-1257, 2007. [91] National Library of Medicine, http://www.nlm.nih.gov/. [92] C. A. Janeway, et al., Immunobiology: the immune system in health and disease vol. 1: Current Biology, 1997. [93] National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/. [94] H. W. Schroeder and L. Cavacini, 'Structure and function of immunoglobulins,' Journal of Allergy and Clinical Immunology, vol. 125, pp. S41-S52, 2010. [95] G. Vidarsson, et al., 'IgG subclasses and allotypes: from structure to effector functions,' Frontiers in Immunology, vol. 5, 2014. [96] Abcam, http://www.abcam.com/. [97] Sigma-Aldrich, http://www.sigmaaldrich.com/taiwan.html. [98] L. Stoner, et al., 'Inflammatory biomarkers for predicting cardiovascular disease,' Clinical biochemistry, vol. 46, pp. 1353-1371, 2013. [99] J. P. Li, et al., 'Increased serum levels of S100B are related to the severity of cardiac dysfunction, renal insufficiency and major cardiac events in patients with chronic heart failure,' Clinical biochemistry, vol. 44, pp. 984-988, 2011. [100] K. Maksimowicz-McKinnon, et al., 'Recent advances in vascular inflammation: C-reactive protein and other inflammatory biomarkers,' Current opinion in rheumatology, vol. 16, pp. 18-24, 2004. [101] Y. Shiotsu, et al., 'Plasma S100A12 Level Is Associated with Cardiovascular Disease in Hemodialysis Patients,' Clinical Journal of the American Society of Nephrology, vol. 6, pp. 718-723, April 1, 2011 2011. [102] L. Carroll, et al., 'Rheumatoid arthritis: links with cardiovascular disease and the receptor for advanced glycation end products,' Wiener Medizinische Wochenschrift, vol. 156, pp. 42-52, 2006. [103] A. Atkinsons, et al., 'Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. biomarker definition working group,”' Clin. Pharmacol. Ther, vol. 69, pp. 89-95, 2001. [104] A. Sillero and J. M. Ribeiro, 'Isoelectric points of proteins: Theoretical determination,' Analytical Biochemistry, vol. 179, pp. 319-325, 1989. [105] ExPASy: SIB Bioinformatics Resource Portal - Compute pI/Mw tool, http://web.expasy.org/compute_pi/. [106] P. S. Bachorik and J. W. Ross, 'National Cholesterol Education Program recommendations for measurement of low-density lipoprotein cholesterol: executive summary. The National Cholesterol Education Program Working Group on Lipoprotein Measurement,' Clinical chemistry, vol. 41, pp. 1414-1420, 1995. [107] G. R. Warnick and P. D. Wood, 'National Cholesterol Education Program recommendations for measurement of high-density lipoprotein cholesterol: executive summary. The National Cholesterol Education Program Working Group on Lipoprotein Measurement,' Clinical chemistry, vol. 41, pp. 1427-1433, 1995. [108] E. Antman, et al., 'Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology committee for the redefinition of myocardial infarction: the Joint European Society of Cardiology/American College of Cardiology Committee,' Journal of the American College of Cardiology, vol. 36, pp. 959-969, 2000. [109] F. S. Apple, et al., 'Validation of the 99th percentile cutoff independent of assay imprecision (CV) for cardiac troponin monitoring for ruling out myocardial infarction,' Clinical chemistry, vol. 51, pp. 2198-2200, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49034 | - |
| dc.description.abstract | 聯合國人口基金會 (United Nations Population Fund, UNFPA) 指出,21世紀最重要的趨勢之一為人口老化,而慢性病為老年人主要面臨的健康問題,且慢性病每年在醫療保健上占了絕大部分的支出,因此「及早發現、及早治療」的觀念漸漸深植人心,預防醫學也逐漸成為醫療的主要趨勢,因此以定點照護為訴求的生物感測器逐漸興起。此外心血管疾病是全球慢性病中的頭號死因,能夠以快速且低成本的方式及早檢測心血管疾病並進行治療是必要的。因此本論文提出一個能夠檢測 S100 beta protein 與 C-reactive protein (CRP) 兩種心血管疾病的生物標記物,希冀能夠開發出免標定高靈敏的定點照護生物感測器。
為了符合定點照護的應用,體積小、成本低、操作簡易及具有足夠的靈敏度等特性是優先的考慮要素。雖然光學式生物感測器具有高靈敏度的優點,但相反的,亦具有體積大、成本高與光路校正不易等問題,因此不適合開發成定點照護的儀器。而電化學阻抗式生物感測器具有成本低、體積小、免標定與校正方便等優點,因此,本論文採用電化學阻抗量測的方法作為檢測的基礎,將三極式電化學量測的三種電極 (工作電極、輔助電極及參考電極) 縮小到一個生物晶片上,並採用微型化之微流體生物晶片量測機構來架設系統。本論文採用電腦模擬電化學電解液電流密度以及原子力顯微鏡量測表面電位來研究能提升生物晶片之檢測靈敏度的方法,並發現於工作電極與輔助電極相鄰處因為電極邊緣效應而有較高的電解液電流密度及表面電位,若於電極邊緣設計上鋸齒結構,其電極尖端效應可更進一步提高電解液電流密度。因此,本論文將工作電極與輔助電極相鄰的電極邊緣加長並於其上加上鋸齒結構,藉以提昇電化學量測效率。此外增加之電極邊緣亦可提高生物分子鍵結於電極邊緣的機率,並進一步提高生物分子被量測到的機率。 本研究利用4-aminothiophenol (4-ATP) 以及cysteamine作為連結分子,分別進行心血管疾病生物標記物 S100 beta protein 與 CRP 的抗體-抗原交互反應,並利用電化學阻抗分析法,驗證微流體生物晶片之可行性。實驗結果顯示,隨著抗原濃度增大,電子傳遞電阻的變化量 (ΔRet) 與其呈現相當線性之關係,可見生物晶片檢測之穩定性。整體的線性量測區間為27 pM (10 ng/ml) 至270 nM (10 μg/ml),檢測極限可達27 pM (10 ng/ml)。本實驗結果也顯示了本論文所開發的鋸齒電極生物晶片的設計可有效提昇電化學阻抗量測的靈敏度,並說明了本生物感測器具有發展成定點照護或手持式生物感測器的潛力。 | zh_TW |
| dc.description.abstract | According to United Nations Population Fund (UNFPA), population aging is one of the most important trends in the 21st century. Chronic diseases have become the major health problem of the elderly and cost a large expense in health care every year. Therefore, the concept of “early detection, early treatment” is growing in popularity in typical citizen’s mind. The preventive medicine thus gradually becomes the main trend. All of which indicate that point-of-care (PoC) biosensors are becoming ever more important. Since cardiovascular disease (CVD) is the leading cause of death among chronic diseases worldwide, it is necessary to detect CVD biomarkers by rapid and low cost methods so as to treat the disease early. This thesis thus focuses on developing a label-free electrochemical biosensor with high sensitivity for PoC application to detect CVD biomarkers, i.e., S100 beta protein and C-reactive protein (CRP).
To fit the PoC application, a biosensor with advantages such as small size, low cost, ease of operation, label-free, and possessing enough sensitivity are primary design factors. Although typical optical biosensors possess high sensitivity, they face limitation such as miniaturization, high cost, and complexity in light beam alignment, etc. All of which limit typical optical biosensors for PoC application. In contrast, electrochemical impedance biosensors have properties needed for PoC biosensors. Therefore, electrochemical methods were used as the basis of the detection methods adopted in this thesis. A more stable three-electrode configuration, including working electrode (WE), counter electrode (CE), and reference electrode (RE), was miniaturized and fit onto a biochip. A miniaturized microfluidic biochip measurement device was used as the platform to develop the system. To improve the detection sensitivity associated with the reduced size in the biochip, computer simulation of electrolyte current density and atomic force microscopy (AFM) for measuring surface potential were used to investigate several potential effective possibilities. It was found that the electrolyte current density and surface potential on the edge near the WE and CE was higher. The zigzag structure designed on the edge could further increase the electrolyte current density. Therefore, in this thesis, the edge of the WE and CE was lengthened and added zigzag structure without changing the area of the WE and CE and maintained the gap between the two electrodes, which raised measurement efficiency. Moreover, the increased edge/area ratio could increase the probability of the bio-molecules binding to the edge of the electrode, which certainly further raised the probability to detect the bio-molecules. The 4-aminothiophenol (4-ATP) and cysteamine were used as linkers to perform antibody-antigen interaction tests for S100 beta protein and CRP biomarkers with an attempt to verify the microfluidic biochip’s feasibility. Results showed that it had a good logarithmic linear relationship between the electron transfer resistance (ΔRet) and a logarithm of the concentrations of bio-molecules. The dynamic range was from 27 pM (10 ng/ml) to 270 nM (10 μg/ml), and the detection limit was 27 pM (10 ng/ml). With the designed zigzag electrode, an electrochemical impedance biosensor developed in this dissertation shows a great potential to be used for point-of-care applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:14:13Z (GMT). No. of bitstreams: 1 ntu-105-F99525038-1.pdf: 3516863 bytes, checksum: ff56d0391ebe846362fe4bbb2b5b9e1d (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
口試委員審定書 i 誌謝 ii 摘要 iii Abstract v Contents viii Figure contents xi Table contents xvii Chapter 1. Introduction 1 1.1 Research background 1 1.2 Biosensors 2 1.2.1 Brief history of biosensor development 2 1.2.2 Biosensor architecture 4 1.3 Electrochemical impedance biosensor 8 1.3.1 Non-faradaic biosensors 8 1.3.2 Faradaic biosensors 10 1.3.3 Electrode design for improving detection quality 13 1.4 Motivation 15 1.5 Thesis organization 16 Chapter 2. Theory 18 2.1 Electrochemistry basis 18 2.1.1 Faradaic and non-faradaic processes 19 2.1.2 Electrochemical reaction procedure 22 2.1.3 Electrochemical cells and half-reactions 25 2.1.4 Potential step method 27 2.1.5 Linear sweep voltammetry 29 2.1.6 Cyclic voltammetry 30 2.1.7 Electrochemical impedance spectroscopy 32 2.1.8 The factors for impedance change 40 2.2 Surface plasmon resonance detection 43 2.2.1 Surface plasmon wave 43 2.2.2 Surface plasmon resonance 45 2.3 Atomic force microscopy technique 46 2.3.1 Contact mode 48 2.3.2 Non-contact mode 49 2.3.3 Tapping mode 50 2.3.4 Electric force microscopy 51 Chapter 3. Material and methods 56 3.1 Chemicals, bio-molecules, and solutions 56 3.1.1 Reagents and solutions 56 3.1.2 Bio-molecules 57 3.2 Surface plasmon resonance measurements 58 3.3 Electrochemical measurements 62 3.3.1 Modification of gold electrode for antibody-antigen interaction 66 3.3.2 Electrochemical measurement methods 69 3.4 AFM measurements 70 Chapter 4. Bio-molecules selection 71 4.1 Antibody characteristic analysis 71 4.2 Protein characteristics analysis 77 Chapter 5. Electrochemical biochip design 81 5.1 Measurement efficiency improvement by electrode edge effect 83 5.1.1 Computer simulation 83 5.1.2 AFM measurements 87 5.2 Measurement efficiency improvement by point effect 88 Chapter 6. Electrochemical sensitivity improvement integration 104 6.1 Electrochemical sensitivity improvement by electrode edge effect 104 6.2 Electrochemical sensitivity improvement by bio-molecules selection 109 6.3 Electrochemical sensitivity improvement by point effect 112 6.4 Other applicability of the new biochip configuration 120 Chapter 7. Conclusions and future works 130 7.1 Conclusions 130 7.2 Future works 131 References 133 | |
| dc.language.iso | en | |
| dc.subject | 鋸齒電極生物晶片 | zh_TW |
| dc.subject | 定點照護 | zh_TW |
| dc.subject | 生物感測器 | zh_TW |
| dc.subject | 心血管疾病 | zh_TW |
| dc.subject | 電化學 | zh_TW |
| dc.subject | 電極邊緣效應 | zh_TW |
| dc.subject | 電極尖端效應 | zh_TW |
| dc.subject | biosensor | en |
| dc.subject | zigzag electrode | en |
| dc.subject | electrochemical | en |
| dc.subject | cardiovascular disease | en |
| dc.subject | biochip | en |
| dc.subject | Electrode edge effect | en |
| dc.subject | point of care | en |
| dc.title | 利用鋸齒電極以優化微型免標定電化學生物感測器之靈敏度 | zh_TW |
| dc.title | Sensitivity improvement of a miniaturized label-free electrochemical biosensor by using zigzag electrode | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 何國川(Kuo-Chuan Ho),林致廷(Chih-Ting Lin),吳文中(Wen-Jong Wu),許聿翔(Yu-Hsiang Hsu),黃念祖(Nien-Tsu Huang) | |
| dc.subject.keyword | 定點照護,生物感測器,心血管疾病,電化學,電極邊緣效應,電極尖端效應,鋸齒電極生物晶片, | zh_TW |
| dc.subject.keyword | Electrode edge effect,point of care,biosensor,biochip,cardiovascular disease,electrochemical,zigzag electrode, | en |
| dc.relation.page | 140 | |
| dc.identifier.doi | 10.6342/NTU201603504 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
