請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49004完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡宛珊 | |
| dc.contributor.author | Long-Chen Lee | en |
| dc.contributor.author | 李隆成 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:13:27Z | - |
| dc.date.available | 2019-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-21 | |
| dc.identifier.citation | REFERENCES
[1] Rosenblueth, E. (1975). Point estimates for probability moments. Proceedings of the National Academy of Sciences, 72(10), 3812-3814. [2] Tsai, C. W., & Franceschini, S. (2005). Evaluation of probabilistic point estimate methods in uncertainty analysis for environmental engineering applications. Journal of environmental engineering, 131(3), 387-395. [3] Harr, M. E. (1989). Probabilistic estimates for multivariate analyses. Applied Mathematical Modelling, 13(5), 313-318. [4] Li, K. S. (1992). Point-estimate method for calculating statistical moments.Journal of Engineering Mechanics, 118(7), 1506-1511. [5] Hong, H. P. (1998). An efficient point estimate method for probabilistic analysis. Reliability Engineering & System Safety, 59(3), 261-267. [6] Franceschini, S., Tsai, C., & Marani, M. (2012). Point estimate methods based on Taylor Series Expansion–The perturbance moments method–A more coherent derivation of the second order statistical moment. Applied Mathematical Modelling, 36(11), 5445-5454. [7] Malmon, D. V., Dunne, T., & Reneau, S. L. (2003). Stochastic theory of particle trajectories through alluvial valley floors. The Journal of geology,111(5), 525-542. [8] Franceschini, S., Marani, M., Tsai, C., & Zambon, F. (2012). A Perturbance Moment Point Estimate Method for uncertainty analysis of the hydrologic response. Advances in Water Resources, 40, 46-53. [9] Tsai, C. W., & Li, M. (2014). Uncertainty analysis and risk assessment of DO concentrations in the Buffalo River using the perturbance moments method.Journal of Hydrologic Engineering, 19(12), 04014032. [10] Christian, J. T., & Baecher, G. B. (1999). Point-estimate method as numerical quadrature. Journal of Geotechnical and Geoenvironmental Engineering. [11] Jondeau, E., & Rockinger, M. (2001). Gram–Charlier densities. Journal of Economic Dynamics and Control, 25(10), 1457-1483. [12] Aroian, L. A. (1937). The type B Gram-Charlier series. The Annals of Mathematical Statistics, 8(4), 183-192. [13] Muscolino, G., & Ricciardi, G. (1999). Probability density function of MDOF structural systems under non-normal delta-correlated inputs. Computer methods in applied mechanics and engineering, 168(1), 121-133. [14] Malmon, D. V., Dunne, T., & Reneau, S. L. (2003). Stochastic theory of particle trajectories through alluvial valley floors. The Journal of geology,111(5), 525-542. [15] Berberan-Santos, M. N. (2007). Expressing a probability density function in terms of another PDF: A generalized Gram-Charlier expansion. Journal of Mathematical Chemistry, 42(3), 585-594. [16] Malmon, D. V., Reneau, S. L., & Dunne, T. (2004). Sediment sorting and transport by flash floods. Journal of Geophysical Research: Earth Surface,109(F2). [17] Dietrich, W. E. (1982). Settling velocity of natural particles. Water resources research, 18(6), 1615-1626. [18] Chang, C. H., Tung, Y. K., & Yang, J. C. (1994). Monte Carlo simulation for correlated variables with marginal distributions. Journal of Hydraulic Engineering, 120(3), 313-331. [19] Liu, P. L., & Der Kiureghian, A. (1986). Multivariate distribution models with prescribed marginals and covariances. Probabilistic Engineering Mechanics,1(2), 105-112. [20] Lin, Z., & Li, W. (2013). Restrictions of point estimate methods and remedy.Reliability Engineering & System Safety, 111, 106-111. [21] Tung, Y. K., Yen, B. C., & Melching, C. S. (2006). Hydrosystems engineering reliability assessment and risk analysis. Hydrosystems Engineering Reliability Assessment and Risk Analysis. [22] Franceschini, S., & Tsai, C. W. (2008). Incorporating reliability into the definition of the margin of safety in total maximum daily load calculations.Journal of Water Resources Planning and Management, 134(1), 34-44. [23] Su, C. L. (2005). Probabilistic load-flow computation using point estimate method. Power Systems, IEEE Transactions on, 20(4), 1843-1851. [24] Malekpour, A. R., Niknam, T., Pahwa, A., & Fard, A. K. (2013). Multi-objective stochastic distribution feeder reconfiguration in systems with wind power generators and fuel cells using the point estimate method. Power Systems, IEEE Transactions on, 28(2), 1483-1492. [25] Mohammadi, M., Shayegani, A., & Adaminejad, H. (2013). A new approach of point estimate method for probabilistic load flow. International Journal of Electrical Power & Energy Systems, 51, 54-60. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49004 | - |
| dc.description.abstract | Point estimate methods (PEMs) are one of uncertainty analysis methods, which are proved to be more computationally efficient than the Monte-Carlo simulation. Application of uncertainty analysis and risk assessment has gained more popularity these days. In the first part of this study, we apply uncertainty analysis to discrete time Markov chain with an attempt to improve the discrete time Markov chain from a deterministic model to a stochastic model. And in the second part, the traditional output(s) of a stochastic model are often expressed using a region of expected value plus and minus a standard deviation. The above expression is based on an underlying assumption that the output distribution is symmetric. To extend the output distribution to an asymmetric distribution, we introduce the Gram-Charlier (GC) type-A series. The GC type-A series utilizes the statistical moments of a random variable to determine an appropriate distribution. It is more straightforward to use GC type-A series to revise the shape of distribution. Additionally, the third and fourth order statistical moments of the Perturbance moments method are made available for the use of the GC type-A series. An example of the hydraulic jump problem is presented to analyze the stochastic output of the flow depth after the jump. Finally, the PMM is improved to consider the correlation of each uncertain variable using the orthogonal transformation to the principal axis of uncertain variables. An example of particle settling is proposed to quantify the uncertainty of settling velocity of a particle. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:13:27Z (GMT). No. of bitstreams: 1 ntu-105-R02521321-1.pdf: 2506897 bytes, checksum: 033371f0d8ae5dffef80748c7b3a57f4 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Problem statement 1 1.2 Objectives of thesis 3 Chapter 2 Literature review 4 2.1 Series method of points estimate method 6 2.2 Application of PMM 8 2.3 Discrete time Markov chain 9 2.4 Gram-Charlier type-A series 9 2.5 Summary 10 Chapter 3 Application of Perturbance moments method to the discrete time Markov chain of sediment transport 11 3.1 Method 11 3.1.1 Perturbance moments method (PMM) 11 3.1.2 Modified Rosenblueth method (MRM) 15 3.1.3 Discrete time Markov chain (DTMC) 17 3.1.4 Data and formula 19 3.1.5 Monte-Carlo simulation (MCS) 23 3.2 Research Result 23 3.3 Discussion 26 3.4 Summary 28 Chapter 4 Improved expression of stochastic output of uncertainty analysis using Gram Charlier series 30 4.1 Method 30 4.1.1 Perturbance moments method 30 4.1.2 Gram-Charlier type-A series 30 4.2 Theoretical data and Formula of objective function 38 4.3 Research Result 40 4.4 Discussion 46 4.4.1 The statistical moment result of MCS, MRM and PMM 46 4.4.2 The output probability distribution of tradition performance and using GC type-A series 46 4.5 Summary 47 Chapter 5 Modified Perturbance moments method (PMM) considering correlated uncertain variables 48 5.1 Proposed way of considering correlation of random variables 48 5.2 Theoretical data and result 50 5.2.1 Theoretical data 50 5.2.2 Theoretical result 52 5.3 Discussion 53 5.4 Summary 53 Chapter 6 Conclusion 54 6.1 Recommendation For Future Work 55 REFERENCES 56 Appendix I: the derivation of three points approximation. 59 | |
| dc.language.iso | en | |
| dc.subject | 水利工程 | zh_TW |
| dc.subject | 不確定分析 | zh_TW |
| dc.subject | 點估計法 | zh_TW |
| dc.subject | PEM | en |
| dc.subject | hydrosystem engineering problem | en |
| dc.subject | uncertainty analysis | en |
| dc.title | 不確定性分析方法之改良及其於水利工程問題之應用 | zh_TW |
| dc.title | Development of Improved Uncertainty Analysis Methods for Hydrosystem Engineering Problems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 游景雲,余化龍,許耀文 | |
| dc.subject.keyword | 不確定分析,點估計法,水利工程, | zh_TW |
| dc.subject.keyword | uncertainty analysis,PEM,hydrosystem engineering problem, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU201603157 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
