請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48978完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏溪成(Shi-Chern Yen) | |
| dc.contributor.author | Che-Yu Chou | en |
| dc.contributor.author | 周哲宇 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:12:51Z | - |
| dc.date.available | 2020-08-31 | |
| dc.date.copyright | 2016-11-02 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-22 | |
| dc.identifier.citation | [1] Goodenough, J. B.; Park, K. S., The Li-Ion Rechargeable Battery: A Perspective. J Am Chem Soc 2013, 135 (4), 1167-1176. [2] Nitta, N.; Wu, F. X.; Evanoff, K.; Lee, J. T.; Gordon, D.; Gu, W. T.; Benson, J.; Magasinski, A.; Kovalenko, I.; Kim, H.; Yushin, G., Nanostructured composite electrodes for Li-ion batteries with enhanced energy density. Abstr Pap Am Chem S 2014, 248. [3] Gu, P.; Cai, R.; Zhou, Y.; Shao, Z., Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis. Electrochimica Acta 2010, 55 (12), 3876-3883. [4] Hossain, S.; Kim, Y. K.; Saleh, Y.; Loutfy, R., Overcharge studies of carbon fiber composite-based lithium-ion cells. J Power Sources 2006, 161 (1), 640-647. [5] Hassoun, J.; Bonaccorso, F.; Agostini, M.; Angelucci, M.; Betti, M. G.; Cingolani, R.; Gemmi, M.; Mariani, C.; Panero, S.; Pellegrini, V.; Scrosati, B., An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Lett 2014, 14 (8), 4901-4906. [6] Hu, J.; Li, H.; Huang, X. J., Electrochemical behavior and microstructure variation of hard carbon nano-spherules as anode material for Li-ion batteries. Solid State Ionics 2007, 178 (3-4), 265-271. [7] Kim, C.; Yang, K. S.; Kojima, M.; Yoshida, K.; Kim, Y. J.; Kim, Y. A.; Endo, M., Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv Funct Mater 2006, 16 (18), 2393-2397. [8] Weydanz, W. J.; Wohlfahrt-Mehrens, M.; Huggins, R. A., A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries. J Power Sources 1999, 81, 237-242. [9] Hertzberg, B.; Alexeev, A.; Yushin, G., Deformations in Si-Li Anodes Upon Electrochemical Alloying in Nano-Confined Space. J Am Chem Soc 2010, 132 (25), 8548-8549. [10] Dimov, N.; Kugino, S.; Yoshio, M., Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochimica Acta 2003, 48 (11), 1579-1587. [11] Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367. [12] Dell, R. M., Batteries - fifty years of materials development. Solid State Ionics 2000, 134 (1-2), 139-158. [13] Whittingham, M. S., Electrical Energy-Storage and Intercalation Chemistry. Science 1976, 192 (4244), 1126-1127. [14] D. W. Murphy, J. B., B. C. H. Steele, Materials for advanced batteries. (Plenum Press, New York, 1980). [15] Murphy, D. W.; Disalvo, F. J.; Carides, J. N.; Waszczak, J. V., Topochemical Reactions of Rutile Related Structures with Lithium. Mater Res Bull 1978, 13 (12), 1395-1402. [16] Lazzari, M.; Scrosati, B., Cyclable Lithium Organic Electrolyte Cell Based on 2 Intercalation Electrodes. J Electrochem Soc 1980, 127 (3), 773-774. [17] T. Nagaura, K. T., Progress in Batteries and Solar Cells. 1990, 9, 209. [18] Nazri, G. A.; Pistoia, G., Lithium Batteries: Science and Technology. Springer US: 2008. [19] Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H., A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 2002, 148 (3-4), 405-416. [20] Ohzeki, K.; Saito, Y.; Golman, B.; Shinohara, K., Shape modification of graphite particles by rotational impact blending. Carbon 2005, 43 (8), 1673-1679. [21] Winter, M.; Novak, P.; Monnier, A., Graphites for lithium-ion cells: The correlation of the first-cycle charge loss with the Brunauer-Emmett-Teller surface area. J Electrochem Soc 1998, 145 (2), 428-436. [22] Guerfi, A.; Brochu, F.; Kinoshita, K.; Zaghib, K., Potato-shaped graphite particles with low impurity rate at the surface, method for preparing same. Google Patents: 2002. [23] Wang, H. Y.; Ikeda, T.; Fukuda, K.; Yoshio, M., Effect of milling on the electrochemical performance of natural graphite as an anode material for lithium-ion battery. J Power Sources 1999, 83 (1-2), 141-147. [24] Herstedt, A.; Fransson, L.; Edstrom, K., Rate capability of natural Swedish graphite as anode material in Li-ion batteries. J Power Sources 2003, 124 (1), 191-196. [25] Verma, P.; Maire, P.; Novak, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010, 55 (22), 6332-6341. [26] Peled, E., The Electrochemical-Behavior of Alkali and Alkaline-Earth Metals in Non-Aqueous Battery Systems - the Solid Electrolyte Interphase Model. J Electrochem Soc 1979, 126 (12), 2047-2051. [27] Eshkenazi, V.; Peled, E.; Burstein, L.; Golodnitsky, D., XPS analysis of the SEI formed on carbonaceous materials. Solid State Ionics 2004, 170 (1-2), 83-91. [28] Moller, K. C.; Hodal, T.; Appel, W. K.; Winter, M.; Besenhard, J. O., Fluorinated organic solvents in electrolytes for lithium ion cells. J Power Sources 2001, 97-8, 595-597. [29] Lu, M.; Cheng, H.; Yang, Y., A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells. Electrochimica Acta 2008, 53 (9), 3539-3546. [30] Lee, S. H.; You, H. G.; Han, K. S.; Kim, J.; Jung, I. H.; Song, J. H., A new approach to surface properties of solid electrolyte interphase on a graphite negative electrode. J Power Sources 2014, 247, 307-313. [31] Peled, E.; Menachem, C.; BarTow, D.; Melman, A., Improved graphite anode for lithium-ion batteries - Chemically bonded solid electrolyte interface and nanochannel formation. J Electrochem Soc 1996, 143 (1), L4-L7. [32] Spahr, M. E.; Wilhelm, H.; Joho, F.; Panitz, J. C.; Wambach, J.; Novak, P.; Dupont-Pavlovsky, N., Purely hexagonal graphite and the influence of surface modifications on its electrochemical lithium insertion properties. J Electrochem Soc 2002, 149 (8), A960-A966. [33] EinEli, Y.; Koch, V. R., Chemical oxidation: A route to enhanced capacity in Li-ion graphite anodes. J Electrochem Soc 1997, 144 (9), 2968-2973. [34] Asrian, N. A.; Bondarenko, G. N.; Yemelianova, G. I.; Gorlenko, L.; Adrov, O. I.; Marassi, R.; Nalimova, V. A.; Sklovsky, D. E., IR study of ozone modified graphite matrix. Mol Cryst Liq Cryst 2000, 340, 331-336. [35] Guo, H. J.; Li, X. H.; Wang, Z. X.; Peng, W. J.; Guo, Y. X., Mild oxidation treatment of graphite anode for Li-ion batteries. J Cent South Univ T 2005, 12 (1), 50-54. [36] Verma, P.; Sasaki, T.; Novak, P., Chemical surface treatments for decreasing irreversible charge loss and preventing exfoliation of graphite in Li-ion batteries. Electrochimica Acta 2012, 82, 233-242. [37] Yoon, S.; Kim, H.; Oh, S. M., Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries. J Power Sources 2001, 94 (1), 68-73. [38] Wu, Y. P.; Rahm, E.; Holze, R., Carbon anode materials for lithium ion batteries. J Power Sources 2003, 114 (2), 228-236. [39] Wang, G. P.; Zhang, B. L.; Yue, M.; Xu, X. L.; Qu, M. Z.; Yu, Z. L., A modified graphite anode with high initial efficiency and excellent cycle life expectation. Solid State Ionics 2005, 176 (9-10), 905-909. [40] Wan, C. Y.; Li, H.; Wu, M. C.; Zhao, C. J., Spherical natural graphite coated by a thick layer of carbonaceous mesophase for use as an anode material in lithium ion batteries. J Appl Electrochem 2009, 39 (7), 1081-1086. [41] Dey, A. N., Electrochemical Alloying of Lithium in Organic Electrolytes. J Electrochem Soc 1971, 118 (10), 1547-1549. [42] Sharma, R. A.; Seefurth, R. N., Thermodynamic Properties of Lithium-Silicon System. J Electrochem Soc 1976, 123 (8), C239-C239. [43] Boukamp, B. A.; Lesh, G. C.; Huggins, R. A., All-Solid Lithium Electrodes with Mixed-Conductor Matrix. J Electrochem Soc 1981, 128 (4), 725-729. [44] Wen, C. J.; Huggins, R. A., Chemical Diffusion in Intermediate Phases in the Lithium-Silicon System. J Solid State Chem 1981, 37 (3), 271-278. [45] Vandermarel, C.; Vinke, G. J. B.; Vanderlugt, W., The Phase-Diagram of the System Lithium-Silicon. Solid State Commun 1985, 54 (11), 917-919. [46] Gao, B.; Sinha, S.; Fleming, L.; Zhou, O., Alloy formation in nanostructured silicon. Adv Mater 2001, 13 (11), 816-819. [47] Obrovac, M. N.; Christensen, L., Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid St 2004, 7 (5), A93-A96. [48] Saint, J.; Morcrette, M.; Larcher, D.; Laffont, L.; Beattie, S.; Peres, J. P.; Talaga, D.; Couzi, M.; Tarascon, J. M., Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites. Advanced Functional Materials 2007, 17 (11), 1765-1774. [49] Wang, G. X.; Yao, J.; Liu, H. K., Characterization of nanocrystalline Si-MCMB composite anode materials. Electrochem Solid St 2004, 7 (8), A250-A253. [50] Li, H.; Huang, X. J.; Chen, L. Q.; Zhou, G. W.; Zhang, Z.; Yu, D. P.; Mo, Y. J.; Pei, N., The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics 2000, 135 (1-4), 181-191. [51] Limthongkul, P.; Jang, Y. I.; Dudney, N. J.; Chiang, Y. M., Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater 2003, 51 (4), 1103-1113. [52] Netz, A.; Huggins, R. A.; Weppner, W., The formation and properties of amorphous silicon as negative electrode reactant in lithium systems. J Power Sources 2003, 119, 95-100. [53] Hatchard, T. D.; Dahn, J. R., In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 2004, 151 (6), A838-A842. [54] Li, J.; Dahn, J. R., An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J Electrochem Soc 2007, 154 (3), A156-A161. [55] Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J., Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 2010, 39 (8), 3115-3141. [56] Szczech, J. R.; Jin, S., Nanostructured silicon for high capacity lithium battery anodes. Energ Environ Sci 2011, 4 (1), 56-72. [57] Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 2008, 3 (1), 31-35. [58] Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J., Silicon Nanotube Battery Anodes. Nano Lett 2009, 9 (11), 3844-3847. [59] Cho, J., Porous Si anode materials for lithium rechargeable batteries. J Mater Chem 2010, 20 (20), 4009-4014. [60] Kang, K.; Lee, H. S.; Han, D. W.; Kim, G. S.; Lee, D.; Lee, G.; Kang, Y. M.; Jo, M. H., Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery. Appl Phys Lett 2010, 96 (5). [61] Abel, P. R.; Lin, Y. M.; Celio, H.; Heller, A.; Mullins, C. B., Improving the Stability of Nanostructured Silicon Thin Film Lithium-Ion Battery Anodes through Their Controlled Oxidation. Acs Nano 2012, 6 (3), 2506-2516. [62] Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N. A.; Hu, L. B.; Nix, W. D.; Cui, Y., Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life. Nano Lett 2011, 11 (7), 2949-2954. [63] Sarti, D.; Einhaus, R., Silicon feedstock for the multi-crystalline photovoltaic industry. Sol Energ Mat Sol C 2002, 72 (1-4), 27-40. [64] Wang, T. Y.; Lin, Y. C.; Tai, C. Y.; Sivakumar, R.; Rai, D. K.; Lan, C. W., A novel approach for recycling of kerf loss silicon from cutting slurry waste for solar cell applications. J Cryst Growth 2008, 310 (15), 3403-3406. [65] Wang, H. Y.; Tan, Y.; Li, J. Y.; Li, Y. Q.; Dong, W., Removal of silicon carbide from kerf loss slurry by Al-Si alloying process. Sep Purif Technol 2012, 89, 91-93. [66] Wu, Y. F.; Chen, Y. M., Separation of silicon and silicon carbide using an electrical field. Sep Purif Technol 2009, 68 (1), 70-74. [67] Dunn, B.; Kamath, H.; Tarascon, J. M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334 (6058), 928-935. [68] Kang, B.; Ceder, G., Battery materials for ultrafast charging and discharging. Nature 2009, 458 (7235), 190-193. [69] Ji, X. L.; Lee, K. T.; Nazar, L. F., A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 2009, 8 (6), 500-506. [70] Abe, T.; Fukuda, H.; Iriyama, Y.; Ogumi, Z., Solvated Li-ion transfer at interface between graphite and electrolyte. J Electrochem Soc 2004, 151 (8), A1120-A1123. [71] Chung, G. C.; Kim, H. J.; Yu, S. I.; Jun, S. H.; Choi, J. W.; Kim, M. H., Origin of graphite exfoliation - An investigation of the important role of solvent cointercalation. J Electrochem Soc 2000, 147 (12), 4391-4398. [72] Yu, Y.; Gu, L.; Zhu, C. B.; Tsukimoto, S.; van Aken, P. A.; Maier, J., Reversible Storage of Lithium in Silver-Coated Three-Dimensional Macroporous Silicon. Adv Mater 2010, 22 (20), 2247-2250. [73] Wang, G. X.; Ahn, J. H.; Yao, J.; Bewlay, S.; Liu, H. K., Nanostructured Si-C composite anodes for lithium-ion batteries. Electrochem Commun 2004, 6 (7), 689-692. [74] Tsai, T. H., Modified sedimentation system for improving separation of silicon and silicon carbide in recycling of sawing waste. Sep Purif Technol 2011, 78 (1), 16-20. [75] Lo, C.-M. 'The Preparation and Applications of Carbon-Coated Silicon Composites as Negative Electrodes for Lithium Cells'. Master Thesis, National Taiwan University, 2015. [76] Kasavajjula, U.; Wang, C. S.; Appleby, A. J., Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 2007, 163 (2), 1003-1039. [77] Beattie, S. D.; Loveridge, M. J.; Lain, M. J.; Ferrari, S.; Polzin, B. J.; Bhagat, R.; Dashwood, R., Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies. J Power Sources 2016, 302, 426-430. [78] Yang, J.; Takeda, Y.; Imanishi, N.; Capiglia, C.; Xie, J. Y.; Yamamoto, O., SiOx-based anodes for secondary lithium batteries. Solid State Ionics 2002, 152, 125-129. [79] Yang, X. L.; Wen, Z. Y.; Zhu, X. J.; Huang, S. H., Preparation and electrochemical properties of silicon/carbon composite electrodes. Electrochem Solid St 2005, 8 (9), A481-A483. [80] Takami, N.; Satoh, A.; Hara, M.; Ohsaki, T., Rechargeable Lithium-Ion Cells Using Graphitized Mesophase-Pitch-Based Carbon-Fiber Anodes. J Electrochem Soc 1995, 142 (8), 2564-2571. [81] Ohzuku, T.; Iwakoshi, Y.; Sawai, K., Formation of Lithium-Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell. J Electrochem Soc 1993, 140 (9), 2490-2498. [82] Green, M.; Fielder, E.; Scrosati, B.; Wachtler, M.; Serra Moreno, J., Structured silicon anodes for lithium battery applications. Electrochem Solid St 2003, 6 (5), A75-A79. [83] Jiang, T.; Zhang, S. C.; Qiu, X. P.; Zhu, W. T.; Chen, L. Q., Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery. Electrochem Commun 2007, 9 (5), 930-934. [84] Atebamba, J. M.; Moskon, J.; Pejovnik, S.; Gaberscek, M., On the Interpretation of Measured Impedance Spectra of Insertion Cathodes for Lithium-Ion Batteries. J Electrochem Soc 2010, 157 (11), A1218-A1228. [85] Pan, Q. M.; Guo, K. K.; Wang, L. Z.; Fang, S. B., Novel modified graphite as anode material for lithium ion batteries. J Mater Chem 2002, 12 (6), 1833-1838. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48978 | - |
| dc.description.abstract | 本論文主旨開發以回收矽晶粒子製備碳矽複合材料作為鋰離子負極材料可行性之研究。在以往的研究以導電石墨導入奈米碳/矽之複合材料解決在循環過程中的體積效應與矽基材低導電的缺點。有別於奈米矽基材,本研究中利用從矽晶切削液回收之微米級矽晶粒子作為矽基材並與碳形成碳/矽複合材料。首先回收純化後的矽晶粒子與無水檸檬酸進行不同比列混合而形成碳矽複合材料。在電池循環測試中,無水檸檬酸與回收矽粒子混合比例為5:1製備出之複合材料的電極表現最佳,此電極的首次鋰化電容量為2647 mAh g-1,經過51次循環後,電容量保持率57 %。 另外,我們在製備碳/矽複合材料中加入乙醇(95%)以探討溶劑對於電池循環表現的影響。碳/矽複合材料在乙醇媒介中,其矽晶粒子可能因為與無定型碳之間產生較強的作用力而被均勻包覆於無定型碳層中,此結構會有效地降低碳矽複合材料在電池循環中的體積效應,並增加其導電與穩定性。因此,在製備過程中加入乙醇之碳矽複合材料所製備之電池,其最高首次鋰化電容量可達 3333 mAh g-1,經過51次循環後之電容量衰退率為1%/cycle。本論文中,我們以簡易的方法回收矽晶粒子,並進一步將製備成碳/矽複合材料,此複合材料具有良好的電化學性能,在鋰離子負極材料將會是有潛力的應用。 | zh_TW |
| dc.description.abstract | The aim of this study is to develop carbon coated Si composites as anode materials from Si slicing slurry for the potential application of Li-ion cells. In our previous study, a hybrid of graphite/carbon coated Si nanoparticles has been developed to overcome the poor cycling stability and low electrical conductivity. In this study, we applied the hybrid rationale to the Si particles recovered from Si ingot slicing slurry. First, the purified Si was mixed up with anhydrous citric acid (ACA) in several ratios to form a series of carbon coated composites. From the results obtained from cycling performance, the carbon coated composites in a 5:1 ratio of ACA to Si exhibited an outstanding performance during cycling test. This electrode displayed first-cycle lithiation specific capacity at 2647 mAh g-1 with 57 % retention after 51 cycles. Furthermore, we investigated the solvent effect on cycling performance by adding 95% ethanol during calcination. With such medium, the Si powder was wrapped evenly by amorphous carbon layers, might indicating the strong interaction between amorphous carbon and silicon particle. This structure effectively suppressed the volume changes and improved electrical conductivity, leading to a stable cyclability. Hence, the composites showed an enhanced 1st cycle lithiation specific capacity of 3333 mAh g-1 with only 1 %/cycle capacity fading after 51 cycles. The carbon coated Si particles hybrid which was prepared by simple recovering Si slicing slurry possessed distinguished electrochemical performance, may be a promising application for Si-based anode materials of Li-ion cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:12:51Z (GMT). No. of bitstreams: 1 ntu-105-R03524090-1.pdf: 4816818 bytes, checksum: 3dcbc581f95240932607d6f4c98b5a51 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 i Abstract ii Content iii List of Figures v List of Tables x Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Features of Rechargeable Li-ion Batteries 3 2.1.1 Basic Concepts of Li-ion Batteries 3 2.1.2 Historical Developments of Li-battery Research 6 2.2 Introduction to Graphite Anode Materials 8 2.2.1 Graphite Anode Materials 8 2.2.2 Solid Electrolyte Interphase (SEI) 12 2.2.3 Surface Modifications 13 2.3 Introduction to Silicon (Si) Anode Materials 15 2.3.1 Pure Si powder Anodes for Li-ion Batteries 15 2.3.2 Nanostructured Silicon Anode and Si-C Composites 20 2.4 Introduction to Silicon Recovery 25 2.4.1 Rapid Growth in Photovoltaic (PV) Industry 25 2.4.2 Removal of Silicon Carbide (SiC) Particles 27 Chapter 3 Experimental 30 3.1 Instruments and devices. 30 3.2 Chemicals and Materials 31 3.3 Fabrication of Composite and Electrodes 32 3.3.1 Purification of slicing slurries 32 3.3.2 Calcination of carbon/silicon composite 33 3.3.3 Preparation of electrode slurry 35 3.3.4 Assembly of Coin Cells 37 3.4 Material Characterizations and Analyses 38 3.4.1 Particle Size Distribution 38 3.4.2 X-ray Diffraction 38 3.4.3 Scanning Electron Microscopy 39 3.5 Electrochemical Characterizations 40 3.5.1 Cells Charge/Discharge Test 40 3.5.2 Cyclic Voltammetry 41 3.5.3 Electrochemical Impedance Spectroscopy 41 Chapter 4 Recycled Silicon Particles as Negative Electrodes for Lithium-Ion Batteries 42 4.1 Introduction 42 4.2 Material Characterizations 43 4.2.1 Purification of silicon slurry 43 4.2.2 Composition Analysis of composite materials 50 4.3 Electrochemical Characterizations 54 4.3.1 Electrochemical Performance 54 4.3.2 Cyclic Voltammetry 59 4.3.3 Electrochemical Impedance Spectroscopy 66 Chapter 5 Conclusion 70 References 71 | |
| dc.language.iso | en | |
| dc.subject | 鋰離子電池負極材料 | zh_TW |
| dc.subject | 碳/矽負極材料 | zh_TW |
| dc.subject | Carbon coated Si materials | en |
| dc.subject | Lithium-ion battery | en |
| dc.title | 回收矽晶粒子製備負極材料應用於鋰離子電池之研究 | zh_TW |
| dc.title | Silicon Anode Materials from Silicon Slicing Slurry for Lithium Ion Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周偉龍(Wei-Lung Chou),吳永富(Yung-Fu Wu),蔡子萱(Tzu-Hsuan Tsai) | |
| dc.subject.keyword | 鋰離子電池負極材料,碳/矽負極材料, | zh_TW |
| dc.subject.keyword | Lithium-ion battery,Carbon coated Si materials, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU201603519 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
