請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48927
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 傅立成 | |
dc.contributor.author | Yen Chao | en |
dc.contributor.author | 趙姸 | zh_TW |
dc.date.accessioned | 2021-06-15T11:11:41Z | - |
dc.date.available | 2019-09-06 | |
dc.date.copyright | 2016-09-06 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-22 | |
dc.identifier.citation | [1] Cynthia Breazeal and B. Scassellati. How to build robots that make friends and influence people. Intelligent Robots and Systems, pages 858–863, 1999.
[2] David Feil-Seifer and Maja J. Mataric. Socially assistive robotics: Ethical issues related to technology. IEEE Robotics and Automation Magazine, 18(1):24–31, 2011. [3] Muhammad Ali, Samir Alili, Matthieu Warnier, and Rachid Alami. An Architecture Supporting Proactive Robot Companion Behavior. In New Frontiers in HumanRobot Interaction at AISB, 2009. [4] Khaoula Youssef, P . Ravindra De Silva, and Michio Okada. Exploring the Four Social Bonds Evolvement for an Accompanying Minimally Designed Robot. 6th International Conference, ICSR 2014, Proceedings, (C):412, 2014. [5] Takayuki Kanda, Dylan F. Glas, Masahiro Shiomi, Hiroshi Ishiguro, and Norihiro Hagita. Who will be the customer?: A social robot that anticipates people’s behavior from their trajectories. In Proceedings of the 10th international conference on Ubiquitous computing - UbiComp ’08, page 380, 2008. [6] Adam Kendon. Conducting interaction. Patterns of behaviour in focused encounters. Cambridge University Press, 1990. [7] Bronislaw Malinowski. The problem of meaning in primitive languages. In The Meaning of Meaning. 1923. [8] John Laver. Communicative Functions of Phatic Communion. In Organization of Behavior in Face-toFace Interaction, pages 215–238. The Hague: Mouton, 1975. [9] Paul D. Krivonos and Mark L. Knapp. Initiating communication: What do you say when you say hello? Central States Speech Journal, 26(2):115–125, 1975. [10] Herbert H. Clark, Robert Schreuder, and Samuel Buttrick. Common ground at the understanding of demonstrative reference. Journal of Verbal Learning and Verbal Behavior, 22(2):245–258, 1983. [11] Eija Ventola. The structure of casual conversation in english. Journal of Pragmatics, 3(3-4):267–298, 1979. [12] Klaus P. Schneider. Topic selection in phatic communication. Multilingua, 6(3): 247–256, 1987. [13] Marvin Minsky. A framework for presenting knowledge. In The Psychology of Computer Vision. 1975. [14] Marek P. Michalowski, Selma Sabanovic, and Reid Simmons. A spatial model of engagement for a social robot. International Workshop on Advanced Motion Control, AMC, 2006:762–767, 2006. [15] Ross Mead, Amin Atrash, and Maja J. Mataric. Recognition of spatial dynamics for predicting social interaction. Proceedings of the 6th international conference on Human-robot interaction - HRI ’11, pages 201–202, 2011. [16] Satoru Satake, Takayuki Kanda, Dylan F. Glas, Michita Imai, Hiroshi Ishiguro, and Norihiro Hagita. How to approach humans?– Strategies for Social Robots to Initiate Interaction. Proceedings of the 4th ACM/IEEE international conference on Human robot interaction - HRI ’09, 28(3):109, 2009. [17] Christopher Peters. A perceptually-based theory of mind for agent interaction initiation. International Journal of Humanoid Robotics, 3(3):321–340, 2006. [18] Christiana Tsiourti, Emilie Joly, Cindy Wings, Maher Ben Moussa, and Katarzyna Wac. Virtual assistive companions for older adults: Qualitative field study and design implications. Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare, pages 134–141, 2014. [19] JosephWeizenbaum. ELIZA—acomputerprogramforthestudyofnaturallanguage communication between man and machine. Communications of the ACM, 9(1):36– 45, jan 1966. [20] Daniel Macias-Galindo, Wilson Wong, John Thangarajah, and Lawrence Cavedon. Coherent topic transition in a conversational agent. In Proceedings of the 13th Annual Conference of the International Speech Communication Association (InterSpeech), Oregon, USA, pages 146—-155, 2012. [21] NadineGlas, KenPrepin, andCatherinePelachaud. EngagementdrivenTopicSelection for an Information-Giving Agent. Workshop on the Semantics and Pragmatics of Dialogue (SemDial 2015 - goDial), 2015. [22] Justine Cassell and Timothy Bickmore. Negotiated Collusion : Modeling Social Languageand its Relationship Effects in ... (May):89–132, 2003. [23] Timothy Bickmore, Daniel Mauer, and Thomas Brown. Context Awareness in Mobile Relational Agents. Intelligent Virtual Agents ’07, Paris., 02115:1–2, 2007. [24] Laura Pfeifer Vardoulakis, Lazlo Ring, Barbara Barry, Candace L. Sidner, and Timothy Bickmore. Designing relational agents as long term social companions for older adults. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7502 LNAI:289–302, 2012. [25] Naouel Ayari and Eric Chibani, Abdelghani Amirat, Yacine Matson. A semantic approach for enhancing assistive services in ubiquitous robotics. Robotics and Autonomous Systems, 75:17—-27, 2016. [26] Andrej Karpathy and Li Fei-Fei. Deep Visual-Semantic Alignments for Generating Image Descriptions. CVPR2015, pages 3128–3137, 2015. [27] Oriol Vinyals and Alexander Toshev. Show and Tell: A Neural Image Caption Generator. nov 2014. [28] Geoffrey Fang, Hao and Gupta, Saurabh and Iandola, Forrest and Srivastava, Rupesh K. and Deng, Li and Dollar, Piotr and Gao, Jianfeng and He, Xiaodong and Mitchell, Margaret and Platt, John C. and Lawrence Zitnick, C. and Zweig. From Captions to Visual Concepts and Back. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1473–1482, 2015. [29] Anna Hristoskova, Carlos Aguëro, Manuela Veloso, and Filip De Turck. Personalized guided tour by multiple robots through semantic profile definition and dynamic redistribution of participants. In 26th Conference on Artificial Intelligence (AAAI-2012), pages 1—-7, 2012. [30] Shotaro Kobayashi, Susumu Tamagawa, Takeshi Morita, and Takahira Yamaguchi. Intelligent humanoid robot with japanese Wikipedia ontology and robot action ontology. In 2011 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 417—-424, 2011. [31] Thomas R. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2):199–220, 1993. [32] Stephen H Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. Hinge-Loss Markov Random Fields and Probabilistic Soft Logic. arXiv:1505, 2015. [33] Matthew Richardson and Pedro Domingos. Markov logic networks. In Machine Learning, volume 62, pages 107–136, 2006. [34] Golnoosh Farnadi, Stephen H Bach, Marjon Blondeel, Marie-Francine Moens, Lise Getoor, and Martine De Cock. Statistical Relational Learning with Soft Quantifiers. In The 25th International Conference on Inductive Logic Programming, 2015. [35] Lotfi A. Zadeh. A computational approach to fuzzy quantifiers in natural languages. Computers & Mathematics with Applications, 9(1):149–184, 1983. [36] Anind K. Dey. Understanding and Using Context. Personal and ubiquitous computing,, 5(1):4–7, 2001. [37] Penelope Brown and Stephen Levinson. Politeness: Some Universals in Language Usage. In Politeness: Some universals in language usage, pages 311–323. 1987. [38] Erving Goffman. On face-work; an analysis of ritual elements in social interaction. Psychiatry, 18(3):213–31, aug 1955. [39] E.T. Hall. The Hidden Dimension. Doubleday & Co, 1966. [40] Jan Svennevig. Getting Acquainted in Conversation : A Study of Initial Interactions. John Benjamins Publishing Company, 2000. [41] Peter V. Marsden and Karen E. Campbell. Measuring Tie Strength. 1984. [42] Eric Gilbert and Karrie Karahalios. Predicting Tie Strength With Social Media. Proceedings of the SIGCHI conference on human factors in computing systems, pages 211–220, 2009. [43] Cynthia Breazeal and Lijin Aryananda. Recognition of Affective Communicative Intent in Robot-Directed Speech. Autonomous Robots, 12(1):83–104, 2002. [44] Rafael A Calvo and Sidney D’Mello. Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. IEEE Transactions on Affective Computing, 1(1):18–37, jan 2010. [45] Aaron Steinfeld, Terrence Fong, David Kaber, Michael Lewis, Jean Scholtz, Alan Schultz, and Michael Goodrich. Common metrics for human-robot interaction. In Proceeding of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction - HRI ’06, page 33, New York, New York, USA, 2006. ACM Press. [46] Yukiko I. Nakano and Ryo Ishii. Estimating user’s engagement from eye-gaze behaviors in human-agent conversations. In Proceedings of the 15th international conference on Intelligent user interfaces - IUI ’10, page 139, New York, New York, USA, 2010. ACM Press. [47] Charles Rich, Brett Ponsler, Aaron Holroyd, and Candace L. Sidner. Recognizing engagement in human-robot interaction. In 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 375–382. IEEE, mar 2010. [48] John B. Lowe Collin F. Baker, Charles J. Fillmore. The Berkeley FrameNet Project. [49] Oriol Vinyals and Quoc V. Le. A Neural Conversational Model. arXiv preprint arXiv:1506.05869, jun 2015. [50] Shuming Lu. Intercultural small talk: An ethnographic analysis of interactions among Chinese and Americans, 1997. [51] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. jun 2015. [52] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, page abs/1409.1556, sep 2014. [53] Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects in context. In European Conference on Computer Vision, volume 8693 LNCS, pages 740–755, may 2014. [54] Christiane. Fellbaum. WordNet : an electronic lexical database. MIT Press, 1998. [55] Jörg Tiedemann. Parallel Data, Tools and Interfaces in OPUS. In Nicoletta (Conference Chair) Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Ugur Dogan, Bente Maegaard, Mariani Piperidis, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12), pages 23–25, Istanbul, Turkey, 2012. [56] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, Xiaoqiang Zheng, and Google Research. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, 2015. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48927 | - |
dc.description.abstract | 隨著家用機器人逐漸出現在市場上,人們對於機器人的期望不再僅限於單純的提供服務,而是希望機器人能夠更人性化的陪伴孩童遊戲,關心家中成員,甚至是看護長者。此類陪伴型機器人不僅要能以自然的方式與使用者互動,還需要更進一步的與使用者建立社交關係,才能夠藉由陪伴達到提供使用者社交支持的目的。為使機器人更快的與使用者建立社交關係,機器人必須具備主動與使用者互動的能力。本論文參考人際互動中寒暄式對話之特性,使機器人仿效人們在開啟寒暄互動時話題選擇的策略,根據當下情境、雙方共同的認知以及社交距離來選擇適當的話題來開始與使用者的互動。首先, 機器人必須能夠藉由有限的感測器資訊判斷當下的情境。其次,機器人必須以符合社交規範與常識的方式找出與情境相關的話題。最後,機器人必須根據與使用者之間的社交距離選擇適當的話題。因此,我們所提出之話題選擇系統包含三大部分。第一,我們建立了一個常識知識庫作為情境判斷與話題選擇的依據,此知識庫包含情境中「人、事、時、地、物」之間各種可能的關係。第二,使用機率軟性邏輯(Probabilistic Soft Logic)將知識庫中的邏輯規則轉換為機率模型以考慮感測器與環境的不確定性。第三,根據社會語言學之研究,考慮當下情境與使用者的親近程度,選擇適當的話題以避免過於唐突的話題冒犯到使用者。最後,我們邀請八位志願者參與我們設計的實驗,實驗結果顯示所提出之話題選擇系統確實能夠依據不同情境與社交關係選擇符合當下情境與社交關係的話題。 | zh_TW |
dc.description.abstract | The researches on robot companions that provide personal service at home have become more and more popular. Robot companions are expected to provide not only physical assistance in daily tasks but also social supports for human. In order to provide social connections and enhance the positive user experience, the capability for such a robot companion to actively initiate an interaction in a natural way is important. When people try to engage with others, they often start from topics that related to the context involved: themselves, their partner or the environment.
In this work, we aim to develop a context-aware robot that initiate a non-task-oriented interaction with the similar strategy. We focus on how a robot could interpret its environment as semantic concepts and generate proper topic proposal to invite the user to start an interaction. To achieve context awareness, we use the help of object recognition components that developed in computer vision field to detect semantic entities in the environment. Then, we combine the detection results with each other using the commonsense knowledge that consist of concepts best representing the environment to establish a context model based on hinge-loss Markov random field. Finally, the robot scores each concept in the context according to the social relationship with the user and generates a sentence to initiate the interaction with the user. In the experiments, we first examine the performance of the context model. Then, four topic selection strategies are compared to examine the effectiveness of the context-aware topics in the field experiments. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:11:41Z (GMT). No. of bitstreams: 1 ntu-105-R03944011-1.pdf: 5374003 bytes, checksum: 4bd3d977172eacc24b2a59bf94e9394b (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 Opening Phase of Human-Human Interaction . . . . . . . . 3 1.3.2 Interaction Initiation in Human-Robot Interaction . . . . . . 6 1.3.3 Dialogue System and Conversational Agent . . . . . . . . . 7 1.3.4 Interpreting Context . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . .13 2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 2.1 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Web Ontology Language . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Hinge-loss Markov Random Field and Probabilistic Soft Logic . . . . . . 15 2.2.1 Hinge-loss Markov Random Field . . . . . . . . . . . . . . . . . 16 2.2.2 Probabilistic Soft Logic . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 Probabilistic Soft Logic with Soft Quantifier . . . . . . . . . . . 21 3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.1 Context of Situation . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.2 Common knowledge . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.3 Social Relationship . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.4 Topic Selection in Phatic Communion . . . . . . . . . . . . . . . 29 3.2 Frame-based Topic Knowledge Base . . . . . . . . . . . . . . . . . . . . 32 3.2.1 Daily Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.2 FrameNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.3 Association Test . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Modeling Context and Topic of Interaction . . . . . . . . . . . . . . . . . 35 3.3.1 Model Construction . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.2 Context Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.3 Topic Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4 Measuring Social Relationship . . . . . . . . . . . . . . . . . . . . . . . 40 3.4.1 Three Dimensions of Social Relationship . . . . . . . . . . . . . 40 3.4.2 Social Relationship . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5 Phatic Communion Using Topic Proposal . . . . . . . . . . . . . . . . . 42 3.5.1 Utterance Generation . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5.2 Feedback Estimation . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 4.1 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1.2 Neural Conversational Model . . . . . . . . . . . . . . . . . . . 48 4.2 Context Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.2 Experiment Procedure . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Topic Selection Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.1 Experiment Procedure . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 55 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 | |
dc.language.iso | en | |
dc.title | 陪伴機器人以提出情境感知之寒暄話題來開啟與人互動 | zh_TW |
dc.title | Context-aware Topic Proposal in Phatic Communion for Interaction Initiation of a Robot Companion | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李琳山,蘇木春,陳信希,徐國鎧 | |
dc.subject.keyword | 對話系統,陪伴型機器人,情境感知,話題選擇,寒暄,互動開啟, | zh_TW |
dc.subject.keyword | Phatic Communion,Social Robot Companion,Topic Selection,Interaction Initiation,Context-aware System, | en |
dc.relation.page | 68 | |
dc.identifier.doi | 10.6342/NTU201603373 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-22 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 5.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。