請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48924完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾雪峰(Snow H. Tseng) | |
| dc.contributor.author | Te-Jen Kung | en |
| dc.contributor.author | 孔德仁 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:11:38Z | - |
| dc.date.available | 2016-08-25 | |
| dc.date.copyright | 2016-08-25 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-22 | |
| dc.identifier.citation | [1] N. Matsusue, Y. Suzuki, and H. Naito, “Charge carrier transport
in neat thin films of phosphorescent iridium complexes,” Japanese journal of applied physics, vol. 44, no. 6R, p. 3691, 2005. [2] U. Wolf, H. Bぴassler, P. Borsenberger, and W. Gruenbaum, “Hole trapping in molecularly doped polymers,” Chemical physics, vol. 222, no. 2, pp. 259–267, 1997. [3] S. M. Lele, “Sustainable development: a critical review,” World development, vol. 19, no. 6, pp. 607–621, 1991. [4] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science, vol. 308, no. 5726, pp. 1274–1278, 2005. [5] S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nature Photonics, vol. 3, no. 4, pp. 180–182, 2009. [6] Y. Chen, K. Denis, P. Kazlas, and P. Drzaic, “12.2: A Conformable Electronic Ink Display using a Foil-Based a-Si TFT Array,” in SID Symposium Digest of Technical Papers, vol. 32, pp. 157–159, Wiley Online Library, 2001. [7] B. Geffroy, P. Le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polymer International, vol. 55, no. 6, pp. 572–582, 2006. [8] H. Jiang, S. Jin, J. Li, J. Shakya, and J. Lin, “III-nitride blue microdisplays,” Applied Physics Letters, vol. 78, no. 9, pp. 1303– 1305, 2001. [9] O. Nuyken, S. Jungermann, V. Wiederhirn, E. Bacher, and K. Meerholz, “Modern trends in organic light-emitting devices (OLEDs),” Monatshefte fぴur Chemie/Chemical Monthly, vol. 137, no. 7, pp. 811–824, 2006. [10] H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Optics express, vol. 16, no. 15, pp. 11044– 11051, 2008. [11] R. Coehoorn, H. van Eersel, P. Bobbert, and R. Janssen, “Kinetic monte carlo study of the sensitivity of oled efficiency and lifetime to materials parameters,” Advanced Functional Materials, vol. 25, no. 13, pp. 2024–2037, 2015. [12] M. Slawinski, M. Weingarten, M. Heuken, A. Vescan, and H. Kalisch, “Investigation of large-area oled devices with various grid geometries,” Organic Electronics, vol. 14, no. 10, pp. 2387– 2391, 2013. [13] I.-H. Lu and Y.-R.Wu, “Modeling for carrier transportation in organic light-emitting diode by considering effective tail states,” in Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2015 22nd International Workshop on, pp. 95–96, IEEE, 2015. [14] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied physics letters, vol. 51, no. 12, pp. 913–915, 1987. [15] H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science, vol. 283, no. 5409, pp. 1900–1902, 1999. [16] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Applied Physics Letters, vol. 79, no. 2, pp. 156–158, 2001. [17] F. Nぴuesch, E. Forsythe, Q. Le, Y. Gao, and L. Rothberg, “Importance of indium tin oxide surface acido basicity for charge injec-tion into organic materials based light emitting diodes,” Journal of Applied Physics, vol. 87, no. 11, pp. 7973–7980, 2000. [18] J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, “Highly flexible transparent electrodes for organic light-emitting diode-based displays,” Applied Physics Letters, vol. 85, no. 16, pp. 3450–3452, 2004. [19] S. Shaheen, G. Jabbour, M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian,M.-F. Nabor, R. Schlaf, E.Mash, and N. Armstrong, “Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode,” Journal of applied physics, vol. 84, no. 4, pp. 2324–2327, 1998. [20] S.-J. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue-and white-light-emitting devices having a carrier-and exciton-confining structure for reduced efficiency roll-off,” Ad- vanced Materials, vol. 20, no. 21, pp. 4189–4194, 2008. [21] S.-J. Su, H. Sasabe, T. Takeda, and J. Kido, “Pyridine-containing bipolar host materials for highly efficient blue phosphorescent oleds,” Chemistry of Materials, vol. 20, no. 5, pp. 1691–1693, 2008. [22] J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Applied Physics Let- ters, vol. 88, no. 17, p. 171109, 2006. [23] B. Movaghar, M. Grぴunewald, B. Ries, H. Bassler, and D. Wぴurtz, “Diffusion and relaxation of energy in disordered organic and inorganic materials,” Physical Review B, vol. 33, no. 8, p. 5545, 1986. [24] E. Meijer, C. Tanase, P. Blom, E. Van Veenendaal, B.-H. Huisman, D. De Leeuw, and T. Klapwijk, “Switch-on voltage in disordered organic field-effect transistors,” Applied Physics Letters, vol. 80, no. 20, pp. 3838–3840, 2002. [25] H. Bぴassler, “Charge transport in disordered organic photoconductors a Monte Carlo simulation study,” physica status solidi (b), vol. 175, no. 1, pp. 15–56, 1993. [26] W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. De Leeuw, and M. Michels, “Unified description of charge-carrier mobilities in disordered semiconducting polymers,” Physical review letters, vol. 94, no. 20, p. 206601, 2005. [27] C. Tanase, E. Meijer, P. Blom, and D. De Leeuw, “Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes,” Physical Review Letters, vol. 91, no. 21, p. 216601, 2003. [28] V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Br´edas, “Charge transport in organic semiconductors,” Chemical reviews, vol. 107, no. 4, pp. 926–952, 2007. [29] Y. Olivier, V. Lemaur, J.-L. Br´edas, and J. Cornil, “Charge hopping in organic semiconductors: Influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks,” The Journal of Physical Chemistry A, vol. 110, no. 19, pp. 6356– 6364, 2006. [30] B. Crone, P. Davids, I. Campbell, and D. Smith, “Device model investigation of single layer organic light emitting diodes,” Jour- nal of applied physics, vol. 84, no. 2, pp. 833–842, 1998. [31] P. Blom, M. De Jong, and M. Van Munster, “Electric-field and temperature dependence of the hole mobility in poly (p-phenylene vinylene),” Physical Review B, vol. 55, no. 2, p. R656, 1997. [32] M. Vissenberg and M. Matters, “Theory of the field-effect mobility in amorphous organic transistors,” Physical Review B, vol. 57, no. 20, p. 12964, 1998. [33] M. Bouhassoune, S. Van Mensfoort, P. Bobbert, and R. Coehoorn, “Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated gaussian disorder,” Organic Electronics, vol. 10, no. 3, pp. 437–445, 2009. [34] J. Yeargan and H. Taylor, “The poole-frenkel effect with compensation present,” Journal of Applied Physics, vol. 39, no. 12, pp. 5600–5604, 1968. [35] G. Jegert, A. Kersch, W. Weinreich, U. Schroぴ der, and P. Lugli, “Modeling of leakage currents in high-dielectrics: Threedimensional approach via kinetic monte carlo,” Applied Physics Letters, vol. 96, no. 6, p. 062113, 2010. [36] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, “Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices,” Applied physics letters, vol. 83, no. 3, pp. 569–571, 2003. [37] C.-H. Hsiao, Y.-H. Lan, P.-Y. Lee, T.-L. Chiu, and J.-H. Lee, “White organic light-emitting devices with ultra-high color stability over wide luminance range,” Organic Electronics, vol. 12, no. 3, pp. 547–555, 2011. [38] Y. Yimer, P. Bobbert, and R. Coehoorn, “Charge transport in disordered organic host–guest systems: effects of carrier density and electric field,” Journal of Physics: Condensed Matter, vol. 20, no. 33, p. 335204, 2008. [39] O. V. Mikhnenko, P. W. Blom, and T.-Q. Nguyen, “Exciton diffusion in organic semiconductors,” Energy & Environmental Sci- ence, vol. 8, no. 7, pp. 1867–1888, 2015. [40] E. B. Namdas, A. Ruseckas, I. D. Samuel, S.-C. Lo, and P. L. Burn, “Triplet exciton diffusion in fac-tris (2-phenylpyridine) iridium (III)-cored electroluminescent dendrimers,” Applied Physics Letters, vol. 86, no. 9, pp. 91104–91104, 2005. [41] M. A. Baldo, D. O’brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, and S. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, vol. 395, no. 6698, pp. 151–154, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48924 | - |
| dc.description.abstract | 近年來有機發光二極體(OLED)已經逐漸進入顯示市場甚至是嶄新的領域,因此發展一套有助於設計有機材料裝置的模擬軟體是很重要的。之前,我們發展了將高斯等效能態密度和普爾 - 弗蘭克爾(Poole-Frenkel)遷移率模型帶到一維的泊松及漂移擴散方程解(Poisson and drift-diffusion solver)來模擬有機材料。
在本篇論文中,我們研究了考慮材料的吸收頻譜來設定等效能態密度分佈的方法。結果顯示這是一個更恰當的方法模擬建立有機材料的等效能態密度。 此外,為了解決低濃度下的參雜的影響而發展二維隨機參雜模型。我們也用二維有限元素法去計算激子的分佈和內部量子效率。結果指出與實驗數據符合。 | zh_TW |
| dc.description.abstract | Organic light emitting diodes (OLEDs) have been gradually entering the display markets and even special light area in recent years.
Therefore, it is important to develop a useful simulation tool assisting in the device design of the organic materials. In the past, 1D Poisson and drift-diffusion solver have been developed by considering Gaussian-shaped density of state and Poole-Frenkel model to simulate organic materials. In this thesis, we study the method about setting up the distribution of density of state by considering the absorption spectrum of the material. The result shows that is a more appropriate method in modeling the density of state in organic materials. Moreover, 2D random dopant model is hence developed to treat the effect of random doping distribution in low doping conditions. We further calculate the 2D exciton distribution and the internal quantum efficiency (IQE) by 2D finite element method. The results show that it is consistent with experimental data. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:11:38Z (GMT). No. of bitstreams: 1 ntu-105-R03941009-1.pdf: 2676810 bytes, checksum: 930a8ae16bdbd8d81fc8d7ccf77fe300 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Introduction to OLED Device . . . . . . . . . . . . . . 3 1.3 Density of State with Absorption Spectrum . . . . . . 6 1.4 Poole-Frenkel Mobility Model . . . . . . . . . . . . . . 7 1.5 Effect of Doping . . . . . . . . . . . . . . . . . . . . . . 10 2 Simulation Method . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Simulation Flow Chart . . . . . . . . . . . . . . . . . . 13 2.2 Drift-Diffusion Charge Control . . . . . . . . . . . . . . 14 2.3 Random Dopant Model . . . . . . . . . . . . . . . . . . 18 2.4 Efficiency Calculation . . . . . . . . . . . . . . . . . . 20 3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1 Simulated Results by Considering Absorption Spectrum 23 3.1.1 EOD of DPPS . . . . . . . . . . . . . . . . . . . 23 3.1.2 EOD of ID-8 . . . . . . . . . . . . . . . . . . . 27 3.1.3 HOD of ID-8 . . . . . . . . . . . . . . . . . . . 31 3.2 Simulated Results of 2D Random Dopant Model . . . . 33 3.2.1 J-V characteristic . . . . . . . . . . . . . . . . . 36 3.2.2 Excitons and Efficiency . . . . . . . . . . . . . . 41 4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 | |
| dc.language.iso | en | |
| dc.subject | 激子擴散 | zh_TW |
| dc.subject | 有機發光二極體 | zh_TW |
| dc.subject | 能態密度 | zh_TW |
| dc.subject | 場依存性載子遷移率 | zh_TW |
| dc.subject | 隨機參雜 | zh_TW |
| dc.subject | field-dependent mobility | en |
| dc.subject | exciton diffusion | en |
| dc.subject | random doping | en |
| dc.subject | organic light emitting diodes | en |
| dc.subject | density of states | en |
| dc.title | 二維數值模擬發光體隨機摻雜在有機發光二極體的研究 | zh_TW |
| dc.title | Two Dimension Numerical Simulation of Random Dopant Effect in Organic Light Emitting Diodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 吳育任(Yuh-Renn Wu) | |
| dc.contributor.oralexamcommittee | 林晃巖(Hoang Yan Lin),梁文傑(Man-Kit Leung),邱天隆(Tien-Lung Chiu) | |
| dc.subject.keyword | 有機發光二極體,能態密度,場依存性載子遷移率,隨機參雜,激子擴散, | zh_TW |
| dc.subject.keyword | organic light emitting diodes,density of states,field-dependent mobility,random doping,exciton diffusion, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU201602865 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
