請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48900完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬(Chii-Wann Lin) | |
| dc.contributor.author | Hsiang-Wei Hu | en |
| dc.contributor.author | 胡翔崴 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:11:09Z | - |
| dc.date.available | 2020-08-30 | |
| dc.date.copyright | 2016-08-30 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-25 | |
| dc.identifier.citation | 1. Kupfer, D.J., E. Frank, and M.L. Phillips, Major depressive disorder: new clinical, neurobiological, and treatment perspectives. The Lancet, 2012. 379(9820): p. 1045-1055.
2. Barnes, D.E., et al., Midlife vs late-life depressive symptoms and risk of dementia: differential effects for Alzheimer disease and vascular dementia. Archives of general psychiatry, 2012. 69(5): p. 493-498. 3. Gelenberg, A.J., et al., PRACTICE GUIDELINE FOR THE Treatment of Patients With Major Depressive Disorder Third Edition. The American Journal of Psychiatry, 2010. 167(10): p. 1. 4. Papakostas, G.I., Managing partial response or nonresponse: switching, augmentation, and combination strategies for major depressive disorder. The Journal of clinical psychiatry, 2009. 70(suppl 6): p. 16-25. 5. Trivedi, M.H., et al., Evaluation of outcomes with citalopram for depression using measurement-based care in STAR* D: implications for clinical practice. American journal of Psychiatry, 2006. 163(1): p. 28-40. 6. Rush, A.J., et al., Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR* D report. American Journal of Psychiatry, 2006. 163(11): p. 1905-1917. 7. Turner, E.H., et al., Selective publication of antidepressant trials and its influence on apparent efficacy. New England Journal of Medicine, 2008. 358(3): p. 252-260. 8. Tess, A.V. and G.W. Smetana, Medical evaluation of patients undergoing electroconvulsive therapy. New England Journal of Medicine, 2009. 360(14): p. 1437-1444. 9. Ren, J., et al., Repetitive transcranial magnetic stimulation versus electroconvulsive therapy for major depression: a systematic review and meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014. 51: p. 181-189. 10. Pascual-Marqui, R.D., C.M. Michel, and D. Lehmann, Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of psychophysiology, 1994. 18(1): p. 49-65. 11. Leuchter, A.F., et al., Biomarkers to predict antidepressant response. Current psychiatry reports, 2010. 12(6): p. 553-562. 12. Farzan, F., et al., What does the electroencephalogram tell us about the mechanisms of action of ECT in major depressive disorders? The journal of ECT, 2014. 30(2): p. 98-106. 13. McCormick, L.M., et al., Antipsychotic effect of electroconvulsive therapy is related to normalization of subgenual cingulate theta activity in psychotic depression. Journal of psychiatric research, 2009. 43(5): p. 553-560. 14. Mumtaz, W., et al., Review on EEG and ERP predictive biomarkers for major depressive disorder. Biomedical Signal Processing and Control, 2015. 22: p. 85-98. 15. Erguzel, T., et al. Classification of major depressive disorder subjects using Pre-rTMS electroencephalography data with support vector machine approach. in Science and Information Conference (SAI), 2014. 2014. IEEE. 16. Hamilton, M., A rating scale for depression. Journal of Neurology, Neurosurgery & Psychiatry, 1960. 23(1): p. 56-62. 17. Shaffer, D., A participant's observations: preparing DSM-IV. The Canadian Journal of Psychiatry, 1996. 41(6): p. 325-329. 18. Calabrese, J.R., et al., A double-blind placebo-controlled study of lamotrigine monotherapy in outpatients with bipolar I depression. The Journal of clinical psychiatry, 1999. 60(2): p. 79-88. 19. Adeli, H., Z. Zhou, and N. Dadmehr, Analysis of EEG records in an epileptic patient using wavelet transform. Journal of neuroscience methods, 2003. 123(1): p. 69-87. 20. Huang, S.-J., C.-T. Hsieh, and C.-L. Huang, Application of Morlet wavelets to supervise power system disturbances. IEEE Transactions on Power Delivery, 1999. 14(1): p. 235-243. 21. Pincus, S.M. Approximate entropy: a complexity measure for biological time series data. in Bioengineering Conference, 1991., Proceedings of the 1991 IEEE Seventeenth Annual Northeast. 1991. IEEE. 22. Erguzel, T.T., et al., Neural network based response prediction of rTMS in major depressive disorder using QEEG cordance. Psychiatry investigation, 2015. 12(1): p. 61-65. 23. Knott, V., et al., Pre-treatment EEG and it's relationship to depression severity and paroxetine treatment outcome. Pharmacopsychiatry, 2000. 33(06): p. 201-205. 24. Heikman, P., et al., Relation between frontal 3–7 Hz MEG activity and the efficacy of ECT in major depression. The journal of ECT, 2001. 17(2): p. 136-140. 25. Cajochen, C., R. Foy, and D.-J. Dijk, Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep Res Online, 1999. 2(3): p. 65-69. 26. Ben-Hur, A., et al., Support vector clustering. Journal of machine learning research, 2001. 2(Dec): p. 125-137. 27. Meyer, D., F. Leisch, and K. Hornik, The support vector machine under test. Neurocomputing, 2003. 55(1): p. 169-186. 28. Shen, C.-P., et al., GA-SVM modeling of multiclass seizure detector in epilepsy analysis system using cloud computing. Soft Computing, 2015: p. 1-11. 29. Okazaki, R., et al., Effects of electroconvulsive therapy on neural complexity in patients with depression: report of three cases. Journal of affective disorders, 2013. 150(2): p. 389-392. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48900 | - |
| dc.description.abstract | 憂鬱症盛行率相當高,為全球人類失能最重要疾病之一,且造成社會經濟嚴重的負擔,關於重度憂鬱症的療法,抗憂鬱藥物,物理 性刺激電療(ECT : electro-convulsive treatment)與磁刺激(rTMS : repetitive transcranial magnetic stimulation)皆是治療的選擇,在各類治療上的高副作用及各治療療效限制之下,期望能找出預測憂鬱症療效的客觀判定方式,增強重度憂鬱症精準治療依據,過去的研究曾藉由腦波偵測發現腦前額葉的theta波段能夠預測重度憂鬱症的療效,並且在藥物治療及磁刺激治療的療效預測上有不錯的成果,但關於電療療效的預測方面尚未有明確的成果,僅驗證theta波段與電療療效有相關性 。
因此,本研究將驗證運用向量支持機(SVM : Support vector machine)對於腦波theta波段的分析來預測電療與藥物的治療效果,並且取出Theta cordance、頻譜量值、近似熵、變異數等特徵值,來進行多維度分類分群,分析電療以及藥物治療的腦波訊號對於療效的關聯性,來預測最佳的抗憂鬱療法,研究預測模型的成果達到藥物短期療效上,精準度為83.1%,靈敏度為81.9%及特異度為78.8%,而藥物長期療效上,精準度為80.3%,且電療療效短療效上,特異度為81.7%及靈敏度具79.2%,電療療效精準度 79.5%,且特異度為78.2%及靈敏度為76.1%,而ROC曲線積分面積(AUC),可得藥物療效短期組高達0.852,藥物療效長期達0.837,電療療效短期預期達0.814,具有初步性的突破,未來隨著收案數的增加將會有更精準的成果。 未來建立臨床資料庫之後,將用以提供病患在治療上的精準選擇判定,免於受到在ECT副作用之苦卻結果無效的風險,或是在治療上可避免用錯治療方式而延誤造成惡化。 | zh_TW |
| dc.description.abstract | The prevalence of depression is very high, and it will be one of the most important and incapacitating human disease worldwide. Major depressive disorder also cause severe social and economic burden. For the therapy of severe depression, antidepressant medication, ECT (electro-convulsive treatment) and rTMS (repetitive transcranial magnetic stimulation) treatment is one of the options. Because of treatment in high side effects and treatment efficacy limit, find out the effect of depression predict by objective determination, and increasing the precision of severe depression treatment based on existing studies. In the past, It have found that the brain detected by electroencephalogram (EEG) can predict the effect of efficacy prefrontal by theta band. There have been good results for prediction of drug efficacy and magnetic stimulation efficacy, but there is no related outcomes for ECT. It just verify that theta band is correlated with the efficacy of ECT.
Therefore, this study will validate that using SVM: Support vector machine) by EEG theta band will predict the therapeutic effect of ECT and drugs. This study uses a series of feature such us energy, variance, approximate entropy and theta cordance to analyze multi-dimensional clustering classification to find correlation efficacy of electrotherapy and drug treatment by EEG and to predict the best antidepressant therapy. The results of the forecast model is that the prediction for the short-term efficacy of the drug is accuracy of 83.1%, sensitivity of 81.9% and specificity of 78.8%, and the long-term efficacy of the drug is the accuracy is 80.3%, specificity of 81.7% and sensitivity of 79.2%, and ECT efficacy is accuracy of 79.5% , specificity of 78.2% and a sensitivity of 76.1%. The ROC curve integral area (AUC) for the short-term efficacy of the drug group is 0.852, and for the long-term efficacy of the drug group is 0.837, short-term efficacy of ECT is 0.814 .The research is kind of breakthrough . In the future, with the increasing number of cases will receive more precise results. After establishing clinical data in future, it will be used to provide accurate selection in the treatment decision. There will be free from the side effects of ECT having the risk of invalidating the results. The wrong treatment can be prevented to avoid the deterioration of delayed treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:11:09Z (GMT). No. of bitstreams: 1 ntu-105-R03945009-1.pdf: 1888470 bytes, checksum: f0f47d026a599efadcc3f43ece482d69 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 致謝..........i
中文摘要 ......iii ABSTRACT......iv 目錄 ......vi Chapter 1 緒論....................1 1.1 重度憂鬱症藥物治療效果性之侷限.....1 1.2 物理性刺激輔助性治療憂鬱症成果與限制.........2 1.3 憂鬱症病理與腦波關聯性........3 Chapter 2 材料與方法...........5 2.1 現有文獻回顧.................5 2.1.1 腦波預測藥物療效..............5 2.1.2 腦波預測磁刺激療效............6 2.1.3 電療對於腦波的改變 ............7 2.1.4 動機與目的 ............8 2.2 實驗設計與演算方法 ............9 2.2.1 實驗方法流程 ............9 2.2.2 收案方式與狀況 ............9 2.2.3 腦波記錄方法 ............11 2.2.4 腦波分析架構 ............12 2.2.5 小波轉換分析 ............13 2.2.6 近似熵分析 ............15 2.2.7 Theta cordance分析...........17 2.2.8 量值與變異數分析 .............18 2.2.9 雙因子變異數分析 .............19 2.2.10 向量支持機分類分群 .............20 Chapter 3 實驗結果 .............23 3.1 抗憂鬱藥物短期的變異數分析 .........23 3.2 抗憂鬱藥物長期的變異數分析 .........24 3.3 電療短期的變異數分析 .........25 3.4 向量支持機分類分群結果 .........26 3.5 向量支持機腦波預測療效模型比較......27 Chapter 4 問題與討論 .........28 4.1 重度憂鬱症療效預測力 .........28 4.2 特徵值擷取與病理關係 .........30 4.3 結論與未來展望 .................31 參考文獻 .................................32 圖目錄 圖1.1、以獨立成分分析法的腦波訊號來源圖………………………………………4 圖2.1、針對磁刺激治療預測的ROC曲線………………………………………….6 圖2.2、治療有效病人的腦波訊號進行t-Test分析…………………………………..7 圖2.3、整體實驗方法流程…………………………………………………………..9 圖2.4、本研究目標電極示意圖……………………………………………………11 圖2.5、腦波訊號處理的整體流程圖……………………………………………….12 圖2.6、小波轉換Morlet wavelet母波波型示意圖………………………………14 圖2.7、二維及三維小波轉換結果示意圖…………………………………………14 圖2.8、近似熵演算判則示意圖……………………………………………………15 圖2.9、腦波取特徵值的方法流程………………………………………………..…19 圖2.10、雙變異數因子分析的示意圖……………………………………………..20 圖2.11、SVM演算原理圖…………………………………………………………21 圖2.12向量支持機的訓練模式示意圖…………….………………………………22 圖3.1、向量支持機之ROC曲線比較表………………………………………….27 表目錄 表1.1、臨床上重度憂鬱症的治療方法……………………………………………3 表2.1、針對藥物治療有效及無效的預測成………………………………………5 表2.2、針對磁刺激治療有效及無效的預測成果…………………………………6 表2.3、短期療效改善狀況…………………………………………………………10 表2.4、執行腦波時症狀嚴重程度變化……………………………………………10 表3.1、抗憂鬱藥物多變異數分析…………………………………………………23 表3.2、抗憂鬱藥物長期療效多變異數分析………………………………………24 表3.3、電療治療療效多變異數分析………………………………………………25 表3.4、向量支持機預測結果比較…………………………………………………29 | |
| dc.language.iso | zh-TW | |
| dc.subject | 向量支持機 | zh_TW |
| dc.subject | 重度憂鬱症 | zh_TW |
| dc.subject | 電器痙攣治療 | zh_TW |
| dc.subject | 近似熵 | zh_TW |
| dc.subject | 變異數 | zh_TW |
| dc.subject | major depressive disorder | en |
| dc.subject | variance | en |
| dc.subject | approximate entropy | en |
| dc.subject | cordance | en |
| dc.subject | electro-convulsive treatment | en |
| dc.subject | support vector machine | en |
| dc.title | 腦波分析重度憂鬱症電療療效之預測 | zh_TW |
| dc.title | Prediction system of electroconvulsive therapy treatment with Electroencephalography Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 邱銘章(Ming-Jang Chiu) | |
| dc.contributor.oralexamcommittee | 廖士程,郭柏齡,張瑞益 | |
| dc.subject.keyword | 重度憂鬱症,電器痙攣治療,近似熵,變異數,向量支持機, | zh_TW |
| dc.subject.keyword | major depressive disorder,electro-convulsive treatment,cordance,approximate entropy,variance,support vector machine, | en |
| dc.relation.page | 34 | |
| dc.identifier.doi | 10.6342/NTU201603552 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 1.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
