請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48891完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳惠文 | |
| dc.contributor.author | Hsiang Li | en |
| dc.contributor.author | 黎享 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:10:59Z | - |
| dc.date.available | 2021-09-06 | |
| dc.date.copyright | 2016-09-06 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-26 | |
| dc.identifier.citation | 1. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2016. CA Cancer J Clin, 2016. 66(1): p. 7-30.
2. R.O.C, T.M.H.W., 2015 Taiwan Public Health Report. Taiwan Health and Welfare report, 2015. 3. Molina, J.R., et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. in Mayo Clinic Proceedings. 2008. Elsevier. 4. Alberg, A.J. and J.M. Samet, Epidemiology of lung cancer. Chest Journal, 2003. 123(1_suppl): p. 21S-49S. 5. Vineis, P., et al., Tobacco and cancer: recent epidemiological evidence. Journal of the National Cancer Institute, 2004. 96(2): p. 99-106. 6. Torok, S., et al., Lung cancer in never smokers. Future Oncology, 2011. 7(10): p. 1195-1211. 7. Hwang, S.J., et al., Lung cancer risk in germline p53 mutation carriers: association between an inherited cancer predisposition, cigarette smoking, and cancer risk. Human genetics, 2003. 113(3): p. 238-243. 8. Sun, S., J.H. Schiller, and A.F. Gazdar, Lung cancer in never smokers—a different disease. Nature Reviews Cancer, 2007. 7(10): p. 778-790. 9. Sanders, B., et al., Non-ocular cancer in relatives of retinoblastoma patients. British journal of cancer, 1989. 60(3): p. 358. 10. Bell, D.W., et al., Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nature genetics, 2005. 37(12): p. 1315-1316. 11. Bailey-Wilson, J.E., et al., A major lung cancer susceptibility locus maps to chromosome 6q23–25. The American Journal of Human Genetics, 2004. 75(3): p. 460-474. 12. Herbst , R.S., J.V. Heymach , and S.M. Lippman Lung Cancer. New England Journal of Medicine, 2008. 359(13): p. 1367-1380. 13. Mirsadraee, S., et al., The 7th lung cancer TNM classification and staging system: Review of the changes and implications. World J Radiol, 2012. 4(4): p. 128-134. 14. Provencio, M., et al., Inoperable stage III non-small cell lung cancer: Current treatment and role of vinorelbine. Journal of thoracic disease, 2011. 3(3): p. 197-204. 15. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-111. 16. Clevers, H., The cancer stem cell: premises, promises and challenges. Nature medicine, 2011: p. 313-319. 17. Eramo, A., T. Haas, and R. De Maria, Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene, 2010. 29(33): p. 4625-4635. 18. Beck, B. and C. Blanpain, Unravelling cancer stem cell potential. Nature Reviews Cancer, 2013. 13(10): p. 727-738. 19. Borovski, T., et al., Cancer stem cell niche: the place to be. Cancer research, 2011. 71(3): p. 634-639. 20. Visvader, J.E. and G.J. Lindeman, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature reviews cancer, 2008. 8(10): p. 755-768. 21. Eramo, A., et al., Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death & Differentiation, 2008. 15(3): p. 504-514. 22. Leung, E.L.H., et al., Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PloS one, 2010. 5(11): p. e14062. 23. Zhang, W.C., et al., Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell, 2012. 148(1): p. 259-272. 24. Patel, M., et al., ALDH1A1 and ALDH3A1 expression in lung cancers: correlation with histologic type and potential precursors. Lung Cancer, 2008. 59(3): p. 340-349. 25. Bertolini, G., et al., Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proceedings of the National Academy of Sciences, 2009. 106(38): p. 16281-16286. 26. Levina, V., et al., Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PloS One, 2008. 3(8): p. e3077. 27. Zhou, S., et al., The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine, 2001. 7(9): p. 1028-1034. 28. Park, C., D. Bergsagel, and E. McCulloch, Mouse myeloma tumor stem cells: a primary cell culture assay. Journal of the National Cancer Institute, 1971. 46(2): p. 411-422. 29. Bruce, W. and H. Van Der Gaag, A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. 1963. 30. Dick, D., Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 1997. 3: p. 730-737. 31. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 2003. 100(7): p. 3983-3988. 32. Singh, S.K., et al., Identification of a cancer stem cell in human brain tumors. Cancer research, 2003. 63(18): p. 5821-5828. 33. Collins, A.T., et al., Prospective identification of tumorigenic prostate cancer stem cells. Cancer research, 2005. 65(23): p. 10946-10951. 34. Takaishi, S., et al., Identification of gastric cancer stem cells using the cell surface marker CD44. Stem cells, 2009. 27(5): p. 1006-1020. 35. Bapat, S.A., et al., Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer research, 2005. 65(8): p. 3025-3029. 36. Ho, M.M., et al., Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer research, 2007. 67(10): p. 4827-4833. 37. Chiou, S.-H., et al., Coexpression of Oct4 and Nanog Enhances Malignancy in Lung Adenocarcinoma by Inducing Cancer Stem Cell–Like Properties and Epithelial–Mesenchymal Transdifferentiation. Cancer research, 2010. 70(24): p. 10433-10444. 38. De Visser, K.E., A. Eichten, and L.M. Coussens, Paradoxical roles of the immune system during cancer development. Nature reviews cancer, 2006. 6(1): p. 24-37. 39. Kalluri, R. and M. Zeisberg, Fibroblasts in cancer. Nature Reviews Cancer, 2006. 6(5): p. 392-401. 40. De Wever, O., et al., Stromal myofibroblasts are drivers of invasive cancer growth. International journal of cancer, 2008. 123(10): p. 2229-2238. 41. Boire, A., et al., PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell, 2005. 120(3): p. 303-313. 42. Orimo, A., et al., Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005. 121(3): p. 335-348. 43. Kucharzewska, P. and M. Belting, Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress. Journal of extracellular vesicles, 2013. 2. 44. Oskarsson, T., E. Batlle, and J. Massagué, Metastatic stem cells: sources, niches, and vital pathways. Cell stem cell, 2014. 14(3): p. 306-321. 45. Peppicelli, S., et al., Extracellular acidity strengthens mesenchymal stem cells to promote melanoma progression. Cell Cycle, 2015. 14(19): p. 3088-3100. 46. Swanton, C., Intratumor heterogeneity: evolution through space and time. Cancer research, 2012. 72(19): p. 4875-4882. 47. Jögi, A., et al., Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proceedings of the National Academy of Sciences, 2002. 99(10): p. 7021-7026. 48. Awale, S., et al., Identification of arctigenin as an antitumor agent having the ability to eliminate the tolerance of cancer cells to nutrient starvation. Cancer research, 2006. 66(3): p. 1751-1757. 49. Majmundar, A.J., W.J. Wong, and M.C. Simon, Hypoxia-inducible factors and the response to hypoxic stress. Molecular cell, 2010. 40(2): p. 294-309. 50. Heddleston, J., et al., Hypoxia inducible factors in cancer stem cells. British journal of cancer, 2010. 102(5): p. 789-795. 51. Gerweck, L.E. and K. Seetharaman, Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer research, 1996. 56(6): p. 1194-1198. 52. Warburg, O., Über den stoffwechsel der carcinomzelle. Naturwissenschaften, 1924. 12(50): p. 1131-1137. 53. Nishisho, T., et al., The a3 isoform vacuolar type H+-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Molecular Cancer Research, 2011. 9(7): p. 845-855. 54. Fukumura, D., et al., Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Research, 2001. 61(16): p. 6020-6024. 55. Chiche, J., M.C. Brahimi‐Horn, and J. Pouysségur, Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. Journal of cellular and molecular medicine, 2010. 14(4): p. 771-794. 56. Gatenby, R.A. and R.J. Gillies, Why do cancers have high aerobic glycolysis? Nature Reviews Cancer, 2004. 4(11): p. 891-899. 57. Zöller, M., CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nature Reviews Cancer, 2011. 11(4): p. 254-267. 58. Su, Y.J., et al., Direct reprogramming of stem cell properties in colon cancer cells by CD44. The EMBO journal, 2011. 30(15): p. 3186-3199. 59. Keysar, S.B. and A. Jimeno, More than markers: biological significance of cancer stem cell-defining molecules. Molecular cancer therapeutics, 2010. 9(9): p. 2450-2457. 60. Takebe, N., et al., Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nature reviews Clinical oncology, 2011. 8(2): p. 97-106. 61. Kise, K., Y. Kinugasa-Katayama, and N. Takakura, Tumor microenvironment for cancer stem cells. Advanced drug delivery reviews, 2016. 99: p. 197-205. 62. Jeter, C.R., et al., NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene, 2011. 30(36): p. 3833-3845. 63. Gangemi, R.M.R., et al., SOX2 silencing in glioblastoma tumor‐initiating cells causes stop of proliferation and loss of tumorigenicity. Stem cells, 2009. 27(1): p. 40-48. 64. Vaupel, P., F. Kallinowski, and P. Okunieff, Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer research, 1989. 49(23): p. 6449-6465. 65. Tsuda, H., et al., Identification of overexpression and amplification of ABCF2 in clear cell ovarian adenocarcinomas by cDNA microarray analyses. Clinical cancer research, 2005. 11(19): p. 6880-6888. 66. Beyer, S., et al., The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. Journal of Biological Chemistry, 2008. 283(52): p. 36542-36552. 67. Elvidge, G.P., et al., Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition the role of HIF-1α, HIF-2α, and other pathways. Journal of biological chemistry, 2006. 281(22): p. 15215-15226. 68. Hjelmeland, A.B., et al., Acidic stress promotes a glioma stem cell phenotype. Cell Death & Differentiation, 2011. 18(5): p. 829-840. 69. Heddleston, J.M., et al., The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell cycle, 2009. 8(20): p. 3274-3284. 70. Yan, Y., X. Zuo, and D. Wei, Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med, 2015. 4(9): p. 1033-1043. 71. Chanmee, T., et al., Key roles of hyaluronan and its CD44 receptor in the stemness and survival of cancer stem cells. Frontiers in oncology, 2015. 5. 72. Bourguignon, L.Y., et al., Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene, 2012. 31(2): p. 149-160. 73. Bourguignon, L.Y., et al., Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. Journal of Biological Chemistry, 2008. 283(25): p. 17635-17651. 74. Xie, G., et al., IL-6-induced epithelial-mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures. International journal of oncology, 2012. 40(4): p. 1171-1179. 75. Takahashi, E., et al., Tumor necrosis factor-α regulates transforming growth factor-β-dependent epithelial-mesenchymal transition by promoting hyaluronan-CD44-moesin interaction. Journal of Biological Chemistry, 2010. 285(6): p. 4060-4073. 76. Seuwen, K., M.-G. Ludwig, and R.M. Wolf, Receptors for protons or lipid messengers or both? Journal of Receptors and Signal Transduction, 2006. 26(5-6): p. 599-610. 77. Dong, L., et al., Acidosis activation of the proton-sensing GPR4 receptor stimulates vascular endothelial cell inflammatory responses revealed by transcriptome analysis. PloS one, 2013. 8(4): p. e61991. 78. Pilon-Thomas, S., et al., Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy. Cancer Research, 2016. 76(6): p. 1381-1390. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48891 | - |
| dc.description.abstract | 肺癌在世界各地皆占癌症死亡的首位。即使許多新的治療方法與藥物出現能增加肺癌病人的存活率,然後病人的癒後仍然不佳。近年來的研究指出,癌症細胞中存在一群癌症幹細胞(Cancer stem cell),與抗藥性、腫瘤生成和遠端轉移有關;癌症幹細胞被視為類似幹細胞且具有幹性(Stemness),意指其具備維持自我更新與分化成其他種類細胞之能力。癌症幹細胞周圍的微環境也同時參與了癌症幹性的調控,而在此微環境中除了癌細胞與各種不同的基質細胞外,還包含了因為腫瘤快速生長所產生的環境壓力,像是低氧以及酸。然而這些微環境壓力對於癌症幹性的調控仍然不清楚;因此,我們想要找出酸性與低氧環境對於肺癌幹細胞的影響為何以及這兩者之間是否具有協同加成的效果。首先,我們利用定量即時聚合酶連鎖反應來檢測肺癌細胞給予酸以及低氧的刺激後,幹細胞標誌 Nanog、Oct3/4、Sox2 mRNA的表現量上升;接著,在球體形成的實驗中,我們發現這兩種環境壓力皆能增加細胞形成球體的能力。最後透過全基因組關聯的分析,其結果顯示這些與癌症幹性正相關的實驗結果可能是透過CD44這個被廣泛研究的幹細胞標誌所調控BMP2-SMAD4 及 STAT1/3等下游訊息路徑。綜合上述,不論是酸或是低氧的微環境壓力皆能增加肺癌細胞的幹性,且在大多數的情形下兩者對於增強癌症幹性具有協同加成的效果。我們的研究顯示,在惡劣壓力環境下(例如:缺氧、酸化),癌細胞可能會透過獲得幹性進行腫瘤惡性演化以求生存繁延。 | zh_TW |
| dc.description.abstract | Lung cancer is the leading cause of cancer-related death around the world. After lots of excursions for advancing the survival, the prognosis of lung cancer remained poor. Recently, cancer stem cells (CSCs) have been identified to be responsible for drug resistance, tumor initiation and metastasis. CSCs can be considered to have the“stemness”property as stem cells with multipotency which maintain self-renewal and differentiate to other cell types. The surrounding microenvironment of CSCs participates in maintaining the stemness of CSCs, and actually the driving forces of tumor microenvironmental evolution are not only the communication between malignant cancer cells and assistant stromal cells but also stimulations of tumor-growth-induced stress, such as hypoxia and acid conditions. However, the regulation and mechanisms of these microenvironment stresses on cancer stemness remains unknown. Therefore, we want to find out the influence of an acidic stress on lung cancer stemness and whether it will be a synergistic effect with hypoxia. First, we found that the expression level of stemness markers, Nanog, Oct3/4 and Sox2 could be significantly up-regulated under the acidic and hypoxic conditions; as well as, enhancement of tumor initiating abilities and self-renew capacities represented by the ability to grow as tumors spheres. Furthermore, genome-wide transcriptomic analysis indicated that this phenomenon could be associated with the induction of CD44, and it would further regulate other downstream signaling on cancer stemness through BMP2-SMAD4 and STAT1& 3. To sum up, we demonstrated that both of acidic and hypoxic stresses could enhance lung cancer stemness, and in most instances there was a synergistic effect among them. Our results suggest that the tumor cells could survive and go malignant evolution via gain of the stemness characteristics under the stressful condition, such as hypoxia and acidic microenvironments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:10:59Z (GMT). No. of bitstreams: 1 ntu-105-R02447005-1.pdf: 2866096 bytes, checksum: efe4e85e2256426527427ea9f47edc89 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
致謝 i 中文摘要 ii Abstract iii Contents iv List of figures vi Introduction 1 Lung cancer 1 Histological classification of lung cancer 2 Cancer stem cells (CSCs) 2 Tumor microenvironment 5 Hypoxia 6 Acidic stress 7 Materials and methods 9 Cell lines and culture condition 9 Acidic and hypoxic cell cultures 9 Total RNA extraction 10 Real-time reverse transcriptase (RT) Q-PCR 10 Total protein extraction 11 BCA protein assay 11 Western blotting 12 Proliferation assay 12 Ultra-low sphere-forming assay 13 ALDEFLUOR assay 13 SP analysis 14 Gene expression profiling 15 Statistical analysis 15 Results 16 Exposure to acidic and hypoxic stresses promotes lung cancer stemness expressions. 16 Removal of acidic and hypoxic stresses reversse lung cancer stemness. . 17 Acidic and hypoxic stresses reprogram lung cancer cells toward a stem-like phenotype. 17 EMT-like profile of CLS1 enhances in acidic and hypoxic exposures. 19 Exposure to acidic stress promotes fibroblasts stemness expressions. 20 Transcriptomics analysis reveals possible mechanisms of acidic stress combined with hypoxia. 20 Discussion 22 Reference 27 | |
| dc.language.iso | en | |
| dc.subject | 酸 | zh_TW |
| dc.subject | 癌症幹細胞 | zh_TW |
| dc.subject | 腫瘤微環境 | zh_TW |
| dc.subject | 低氧 | zh_TW |
| dc.subject | Hypoxia | en |
| dc.subject | Cancer stem cells | en |
| dc.subject | Tumor microenvironment | en |
| dc.subject | Acidosis | en |
| dc.title | 酸性與低氧環境對肺癌細胞幹性之影響 | zh_TW |
| dc.title | Acidic and hypoxic condition on cancer stemness reprogramming | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊泮池,林泰元,陳健尉 | |
| dc.subject.keyword | 癌症幹細胞,腫瘤微環境,酸,低氧, | zh_TW |
| dc.subject.keyword | Cancer stem cells,Tumor microenvironment,Acidosis,Hypoxia, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU201603564 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
