Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48878
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅(Chih-I Wu)
dc.contributor.authorTing-Hao Chenen
dc.contributor.author陳廷豪zh_TW
dc.date.accessioned2021-06-15T11:10:45Z-
dc.date.available2016-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-07-20
dc.identifier.citation[1-1] Chapin, D.M., C.S. Fuller, and G.L. Pearson, Journal of Applied Physics, 1954.25(5): p.676
[1-2] National Center for Photovoltaics, Research Cell Efficiency Records
[1-3] W. Shockley, H.J. Queisser. Journal of Applied Physics 32, 510 (1961); dii: 10.1063/1.1736034
[1-4] M.A. Green, K. Emery, Y. Hichikawa, W. Warta, and E. Dunlop. Progress in Photovoltaics: Research and Applications, 2014.
[2-1] Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Science 270, 1789–1791 (1995).
[2-2] Hook, J. R.; H. E. Hall (2001). Solid State Physics. John Wiley & Sons. ISBN 0-471-92805-4.
[2-3] G. Li, V. Shrotriya, J. Huang, T. Mariarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
[2-4] Lu, L.; Yu, L. Adv. Mater. 2014, 26, 4413−4430.
[2-5] Y. Sahin, S. Alem, R. Bettignies, J. M. Nunzi, Thin Solid Films 2005, 476, 340.
[2-6] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater. 11, 374 (2001).
[2-7] F. Zhang, M. Ceder, O. Inganäs, Adv. Mater. 2007, 19, 1835–1838.
[2-8] National Instruments, “Part II - Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis Code”, 2012.
[2-9] Mbraun
[2-10] The SPECS manual: UV-Source UVS 10/35
[2-11] Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Wei-Hsuan Tseng's Doctoral Thesis
[3-1] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, H. Xu, Nat. Mater. 2003, 2, 821.
[3-2] H.-Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat. Photonics 2009, 3, 649.
[3-3] Y.Y. Liang, Z. Xu, J.B. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, L.P. Yu, Adv. Mater. 2010, 22, E135.
[3-4] Y. Li, Acc. Chem. Res. 2012, 45, 723– 733.
[3-5] L.-M. Chen, Z. Hong, G. Li, Y. Yang, Adv. Mater. 2009, 21, 1434.
[3-6] Y. Yao, J. H. Hou, Z. Xu, G. Li, Y. Yang, Adv. Funct. Mater. 2008, 18, 1783.
[3-7] S. J. Lou, J. M. Szarko, T. Xu, L. P. Yu, T. J. Marks, L. X. Chen, J. Am. Chem. Soc. 2011, 133, 20661.
[3-8] P.Cheng, Y. Li, X. Zhan, Energy Environ. Sci. 2014, 7, 2005− 2011.
[3-9] M. T. Dang, L. Hirsch, G. Wantz, Adv. Mater. 2011, 23, 3597–3602
[3-10] M. D. Irwin, B. Buchholz, A. W. Hains, R. P. H. Chang, T. J. Marks, PNAS. vol.15, no.8, 2008.
[3-11] G. J. Zhao, Y. J. He, Y. F. Li, Adv. Mater. 2010, 22, 4355–4358.
[3-12] Y. He, H.-Y. Chen, J. Hou, Y. Li, J. Am. Chem. Soc. 2010, 132, 1377–1382
[3-13] A. L. Roest, J. J. Kelly, D. Vanmaekelbergh, E. A. Meulenkamp, Phys. Rev. Lett. 89, 036801.
[3-14] Q. Zhang, C. S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 2009, 21, 4087–4108
[3-15] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 2005, 4, 42.
[3-16] A.B.Djurisˇic ́,Y.H.Leung, Small, 2, 2006, 944–961.
[3-17] M. D. McCluskey1,2,a) and S. J. Jokela. J. Appl. Phys. 106, 071101 (2009).
[3-18] M. N. Kamalasanan, S. Chandra, Thin Solid Films 1996, 288, 112.
[3-19] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, A. J. Heeger, Adv. Mater. 2011, 23, 1679.
[3-20] F. C. Krebs, S. A. Gevorgyan and J. Alstrup, J. Mater. Chem., 2009, 19, 5442–5451.
[3-21] L. Vayssieres, K. Keis, S.-E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 2001, 105, 3350-3352
[3-22] J. Xu, Y. Chen, Y. Li, J. Shen, J. Mater. Sci., 40, 2919–21 (2005).
[3-23] C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, W. Chen, Appl. Phys. Lett. 2008, 93, 193307.
[3-24] M. Kroger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Org. Electron., 10 (2009), p. 932.
[3-25] D. W. Zhao, S. T. Tan, L. Ke, P. Liu, A. K. K. Kyaw, X. W. Sun, G. Q. Lo, D. L. Kwong, Sol. Energy Mater. Sol. Cells, 94 (2010), p. 985.
[3-26] A. W. Hains, J. Liu, A. B. F. Martinson, M. D. Irwin, T. J. Marks, Adv. Funct. Mater. 2010, 20, 595
[3-27] W. Song, S. K. So, D. Wang, Y. Qui, and L. Cao, Appl. Surf. Sci. 177, 158, 2001.
[3-28] Z. Liang, Q. Zhang, O. Wiranwetchayan, J. Xi, Z. Yang, K. Park, C. Li, G. Cao, Adv. Funct. Mater. 2012, 22, 2194–2201.
[3-29] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat Photon 2012, 6, 591.
[3-30] M. Reyes-Reyes, K. Kim, D. L. Carrol, Appl. Phys. Lett. 2005, 87, 083506.
[3-31] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nature Photonics 3, 649 - 653 (2009).
[3-32] P. Cheng, Y. Li, X. Zhan, Energy Environ. Sci. 2014, 7, 2005− 2011.
[3-33] H. Li, Z. G. Zhang, Y. F. Li, J. Wang, Appl. Phys. Lett. 101, 163302 (2012).
[3-34] Z. Liang, Q. Zhang, O. Wiranwetchayan, J. Xi, Z. Yang, K. Park, C. Li, G. Cao, Adv. Funct. Mater. 2012, 22, 2194–2201.
[3-35] K. Takanezawa, K. Hirota, Q.-S. Wei, K. Tajima, K. Hashimoto, J. Phys. Chem. C 2007, 111, 7218-7223.
[3-36] M. Lenes, L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, Appl. Phys. Lett. 88, 243502 (2006).
[3-37] L. Vayssie`re, Adv. Mater. 2003, 15 (5), 464.
[3-38] S.-H. Kao, Z.-L. Tseng, P.-Y. Ho, C.-Y. Kao, S. Thiyagua, C.-F. Lin, J. Mater. Chem. A, 2013, 1, 14641–14648.
[3-39] C. S. Chen, P. C. Yang, Y. M. Shen, S. Y. Ma, S. C. Shiu, S. C. Hung, S. H. Lin, C. F. Lin, Sol. Energy Mater. Sol. Cells, 2012, 101, 180–185.
[3-40] E. L. Lim, C. C. Yap, M. Yahaya, M. M. Salleh, Semicond. Sci. Technol., 28 (2013), p. 045009.
[3-41] J.-Y. Chen, F.-C. Hsu, Y.-M. Sungc, Y.-F. Chen, J. Mater. Chem., 2012, 22, 15726.
[3-42] J. Chung, J. Lee, S. Lim, Physica B 2010, 405, 2593.
[4-1] Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A.J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T.M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.L. Brédas, S.R. Marder, A. Kahn, B. Kippelen. Science, 336 (2012), pp. 327–332.
[4-2] F. Zhang, M. Ceder, O. Inganäs, Adv. Mater. 2007, 19, 1835.
[4-3] L. Lu, L. Yu, Adv. Mater. 2014, 26, 4413– 4430.
[4-4] Z. C. He, C. Zhang, X. F. Xu, L. J. Zhang, L. Huang, J. W. Chen, H. B. Wu, Y. Cao, Adv. Mater. 2011, 23, 3086.
[4-5] Y. M. Chang, C. Y. Leu, J. Mater. Chem. A 2013, 1, 6446.
[4-6] J. H. Seo, T. Q. Nguyen, J. Am. Chem. Soc., 2008, 130 (31), pp 10042–10043.
[4-7] J. H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger, G. C. Bazan, J. Am. Chem. Soc. 2011, 133, 8416–8419.
[4-8] M. Matsumura, K. Furukawa, Y. Jinde, Thin Solid Films 1998, 331, 96.
[4-9] F. Zhang, M. Ceder, O. Inganäs, Adv. Mater. 2007, 19, 1835–1838.
[4-10] T. M. Khan, Y. Zhou, A. Dindar, J. W. Shim, C. Fuentes-Hernandez, B. Kippelen, ACS Appl. Mater. Interfaces 2014, 6, 6202– 6207.
[4-11] Y.-M. Chang, C.-Y. Leu, J. Mater. Chem. A, 2013, 1, 6446.
[4-12] V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, Y. Yang, Appl. Phys. Lett. 88, 073508, 2006.
[5-1] X. Gu, W. Cui, H. Li, Z. Wu, Z. Zeng, S.-T. Lee, H. Zhang, B. Sun, Adv. Energy Mater. 2013, 3, 1262.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48878-
dc.description.abstract在這篇論文,我們討論PTB7:PC71BM運用在倒置型高分子太陽能電池。高分子太陽能電池有非常多的優點,包括低成本製程、具機械上的彈性、大面積滾輪製造、製程簡單和質量輕,因為這些優點,科學家致力於研究高分子太陽能電池。高分子太陽能電池的進步來自於材料上的創新以及元件結構上的工藝,最近一個新穎的高效率主動層材料被發明出來,此材料為PTB7:PC71BM,這個令人驚艷的材料有著破紀錄的效率,很多研究都投入在這個材料上。這篇論文著墨於元件結構上的創新,以期許效率可以往上進行突破,在此同時其相關的機制也被探討。
在第二章,介紹一些基本原理和機制。部分原理與無機太陽能電池是一樣的,無機太陽能電池的相關機制已經被發展完善,然而在高分子太陽能電池裡有些機制仍然不清楚,因此更多相關的細節在這個章節被拿來探討。
在第三章,探討使用氧化鋅當作電子傳輸層以及其相關的應用。電子傳輸層在倒置型高分子太陽能電池相當重要,因為ITO的功函數高的關係,所以電子傳輸層可以拿來降低陰極電極的功函數以阻止空間電荷效應和減少載子複合。此外,氧化鋅非常適合拿來當作電子傳輸層,因為它具有高導電度和高穿透度。這邊比較一些常見的主動層材料搭配氧化鋅當作電子傳輸層,除此之外,多層氧化鋅結構可以更平坦的與主動層接觸,所以搭配兩層氧化鋅薄膜其效率可以達到6.25%。另外值的一提的是氧化鋅可以拿來做多種的奈米結構,一個解決主動層擴散長度短的極佳方法為將氧化鋅柱插入主動層中,氧化鋅柱可以提供一個新的通道來傳輸載子,因此載子可以被有效的萃取,電流密度大量的提升使其效率來到7.56%。然而氧化鋅柱的長度是很重要的課題。
在第四章,PEIE和PFN被用來改變ITO和氧化鋅的功函數。報告指出PEIE有能力降低多種材料的功函數,在這章裡,PEIE被用來降低ITO和氧化鋅的功函數,因此介面上的能階調變被有效的改善,在兩層氧化鋅上塗佈PEIE有較佳的效率為6.56%。然而PFN也有相同的能力改變ITO和氧化鋅的功函數,三層氧化鋅上塗佈PFN有很明顯的提升,效率6.78%來到更高的境界。最後,電洞傳輸層和陽極電極也被優化,優化後的元件效率達到6.84%且FF有62.73%。
最後總結這篇論文,多種元件結構上的工藝被探討。這些工藝更進一步推升效率到達另一個境界,而且它們可以被用在新的高效率材料,然而必須花費更多的心力投注在提升高分子太陽能電池。
zh_TW
dc.description.abstractIn this thesis, the inverted polymer solar cells using PTB7:PC71BM as an active layer is studied. The potential advantages of polymer solar cells are numerous, including the low-cost of the process, mechanical flexibility, the ability for large area roll-to-roll processes, easy production, and light weight. Dependent clause researches have made great efforts on studying polymer solar cells. The improvements of polymer solar cells could result in both material innovation and state-of-the-art device architecture. Recently, a novel high efficiency active layer material was invented, which is PTB7:PC71BM. This promising material gives polymer solar cells a record high efficiency. Various research has studied this material. The state-of-the-art architecture is focused on this paper to further push the efficiency to another level, also the mechanics are discussed.
The basic principle and mechanics are introduced in chapter 2. Some of the concepts are the same with inorganic solar cells. The mechanics of inorganic solar cells have been fully developed. However, some of the mechanics in polymer solar cells are still dubious. Hence, more details have been discussed in this chapter.
In chapter 3, using ZnO as an electron transport layer and its further applications are discussed. The electron transport layer is relatively important in inverted architecture polymer solar cells, compared to conventional architecture polymer solar cells. Due to the high work function of ITO, the electron transport layer could lower the work function of the cathode electrode, preventing space charge effect; and hence, reducing the carriers recombination. Moreover, ZnO is an outstanding candidate to serve as the electron transport layer due to its high conductivity and transmittance. Some common active layers are compared using ZnO as an electron transport layer. In addition, multi-layers ZnO thin film could provide a smooth contact with the active layer; raising the power conversion efficiency to 6.25% with two layers ZnO thin film. It is noted that ZnO could exhibit a variety of nanostructures. An excellent solution to solve the short diffusion length of the active layer is to insert ZnO nanorods into the active layer. ZnO nanorods could provide an alternative tunnel to transport carriers. As a result, the carriers could be efficiently collected. The power conversion efficiency comes to 7.56% due to the enhancement of current density. Nevertheless, the ZnO nanorods length is a critical issue.
In chapter 4, PEIE and PFN are introduced and used to modify the work function of metal or metal oxide. PEIE is reported to have the ability to lower the work function of variety materials. PEIE is used in this chapter to lower the work function of ITO and ZnO; and hence, the interfacial energy alignment has a better improvement. The device with PEIE on the top of two layers ZnO thin film has a better power conversion efficiency of 6.56%. Since PFN has the same ability to modify the work function of ITO and ZnO, a great enhancement is presented in the device with PFN on the top of three layers ZnO thin film. The power conversion efficiency comes to a higher level of 6.78%. Finally, the hole transport layer and anode electrode have been optimized. The optimized device has power conversion efficiency of 6.84% and FF of 62.73%.
In conclusion, various state-of-the-art architecture have been discussed. The state-of-the-art architecture further pushes the efficiency to another level. Besides, they could be used, when a novel high efficiency material is invented. Nevertheless, great effort but more needs to be done.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:10:45Z (GMT). No. of bitstreams: 1
ntu-105-R01941116-1.pdf: 15748420 bytes, checksum: 98198d9bae80afa08c0edec03e12d43d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents謝辭 III
中文摘要 VI
Abstract VIII
Contents XI
List of Figures XV
List of Table XVIII
Chapter 1 Overview of Photovoltaics 1
1.1 Overview of Photovoltaics 1
1.2 References 4
Chapter 2 Introduction and Experimental Equipment 5
2.1 Introduction to Polymer Solar Cells 6
2.1.1 Background of Polymer Solar Cells 6
2.1.2 Principle of Polymer Solar Cells 6
2.1.3 Bulk Heterojunction 7
2.1.4 Inverted Polymer Solar Cells 9
2.2 Operation Principle of Solar Cells 10
2.2.1 The Equivalent Circuit of Solar Cells 10
2.2.2 Analysis of Open Circuit Voltage (VOC) 11
2.2.3 Analysis of Short Circuit Current Density (JSC) 13
2.2.4 Analysis of Fill Factor (FF) 14
2.2.5 Analysis of Power Conversion Efficiency (PCE) 16
2.2.6 Analysis of Series Resistance (RS) 16
2.2.7 Analysis of Shunt Resistance (RSh) 16
2.3 Equipment 17
2.3.1 Gloves Box 17
2.3.2 Solar Simulator 18
2.3.3 External Quantum Efficiency (EQE) 19
2.3.4 Atomic Force Microscopy (AFM) 20
2.3.5 UV-Visible Spectrophotometer 20
2.3.6 Ultraviolet Photocurrent Spectroscopy (UPS) 21
2.4 Reference 24
Chapter 3 Use ZnO as Electron Transport Layer and Its Applications 25
3.1 Motivation 26
3.2 Experimental Material 27
3.2.1 Active Layer – PTB7:PC71BM, P3HT:PCBM, P3HT:ICBA 27
3.2.2 Electron Transport Layer – ZnO 35
3.2.3 ZnO Nanorods 36
3.2.4 Hole Transport Layer – MoO3 37
3.2.5 Electrode - Al 38
3.3 Experimental Method 39
3.3.1 ITO Substrate Preparation 39
3.3.2 Electron Transport Layer Fabrication 40
3.3.3 Active Layer Fabrication 41
3.3.4 Hole Transport Layer Fabrication – MoO3 43
3.3.5 Anode Electrode Fabrication 43
3.4 Compare Different Active Layer Using ZnO as Electron Transport Layer 43
3.5 Enhance Performances by Increasing ZnO Layer Numbers 48
3.6 Applying ZnO Nanorods to Devices 52
3.7 References 58
Chapter 4 Modify Electron Transport Layer and Cathode Electrode 62
4.1 Motivation 63
4.2 Experimental Material 64
4.2.1 PEIE 64
4.2.2 PFN 65
4.3 Experimental Method 67
4.3.1 Substrate Preparation 67
4.3.2 PEIE and PFN Film Fabrication 67
4.3.3 Active Layer Fabrication – PTB7:PC71BM 68
4.3.4 Hole Transport Layer Fabrication – MoO3 69
4.3.5 Anode Electrode Fabrication 69
4.4 Use PEIE as Conducting Materials Modifier 70
4.4.1 Lower the work function of ITO 70
4.4.2 Lower the work function of ZnO 73
4.5 Use PFN as Conducting Materials Modifier 76
4.5.1 Modify the Work Function of ITO by PFN 76
4.5.2 Modify the Work Function of ZnO by PFN 80
4.6 Optimize the Thickness of Hole Transport Layer and Anode Electrode 84
4.7 Optimize Active Layer – PTB7:PC71BM 86
4.8 References 88
Chapter 5 Conclusion 89
5.1 Conclusion 89
5.2 Future Work 91
5.3 References 92
dc.language.isoen
dc.subjectPEIEzh_TW
dc.subject倒置zh_TW
dc.subjectPFNzh_TW
dc.subjectPTB7zh_TW
dc.subject高分子太陽能電池zh_TW
dc.subject氧化鋅zh_TW
dc.subject奈米柱zh_TW
dc.subjectPFNen
dc.subjectpolymer solar cellsen
dc.subjectinverteden
dc.subjectPTB7en
dc.subjectZnOen
dc.subjectNanorodsen
dc.subjectPEIEen
dc.title主動層 PTB7:PC71BM 製備倒置型高分子太陽能電池及其元件特性研究zh_TW
dc.titleFabrications and Device Characterizations of Inverted Polymer Solar Cells Using PTB7:PC71BM as Active Layeren
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳美杏(Mei-Hsin Chen),吳育任(Yuh-Renn Wu),吳肇欣(Chao-Hsin Wu)
dc.subject.keyword高分子太陽能電池,倒置,PTB7,氧化鋅,奈米柱,PEIE,PFN,zh_TW
dc.subject.keywordpolymer solar cells,inverted,PTB7,ZnO,Nanorods,PEIE,PFN,en
dc.relation.page92
dc.identifier.doi10.6342/NTU201601107
dc.rights.note有償授權
dc.date.accepted2016-07-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
15.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved