Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48875
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃德富(Tur-Fu Huang)
dc.contributor.authorShu-Ting Yangen
dc.contributor.author楊舒婷zh_TW
dc.date.accessioned2021-06-15T11:10:42Z-
dc.date.available2020-03-01
dc.date.copyright2017-03-01
dc.date.issued2016
dc.date.submitted2016-07-22
dc.identifier.citation1. Scott M. Lilly and Robert L. Wilensky, Emerging therapies for acute coronary syndromes, Front. Pharmacol., 24 October 2011
2. Jy W, Jimenez JJ, Horstman LL, Ahn YS. In: Interventional Cardiology Secrets. Marchena Ed, Ferrara A, editor. NY London Elsevier Press; 2003. Platelets, coagulation and thrombosis. Ch. 8; pp. 42–50.
3. Nilsson IM, Blomback M, Von FI. On an inherited autosomal hemorrhagic diathesis with antihemophilic globulin (AHG) deficiency and prolonged bleeding time. Acta Med Scand 1957;159:35-57.
4. Nilsson IM, Blomback M, Jorpes E, et al. von Willebrand's disease and its correction with human plasma fraction 1-0. Acta Med Scand 1957;159:179-188.
5. Sadler JE, Shelton-Inloes BB, Sorace JM, et al. Cloning and characterization of two cDNAs coding for human von Willebrand factor. Proc Natl Acad Sci U S A 1985;82:6394-6398.
6. Verweij CL, Diergaarde PJ, Hart M, Pannekoek H. Full-length von Willebrand factor (vWF) cDNA encodes a highly repetitive protein considerably larger than the mature vWF subunit. EMBO J 1986;5:1839-1847.
7. Emsley J, Cruz M, Handin R, Liddington R. Crystal structure of the von Willebrand Factor A1 domain and implications for the binding of platelet glycoprotein Ib. J Biol Chem 1998;273:10396-10401.
8. Bienkowska J, Cruz M, Atiemo A, Handin R, Liddington R. The von Willebrand factor A3 domain does not contain a metal ion-dependent adhesion site motif. J Biol Chem 1997;272:25162-25167.
9. Lankhof H, van Hoeij M, Schiphorst ME, et al. A3 domain is essential for interaction of von Willebrand factor with collagen type III. Thromb Haemost 1996;75:950-958.
10. Sixma JJ, Schiphorst ME, Verweij CL, Pannekoek H. Effect of deletion of the A1 domain of von Willebrand factor on its binding to heparin, collagen and platelets in the presence of ristocetin. Eur J Biochem 1991;196:369-375.
11. Martin C, Morales LD, Cruz MA. Purified A2 domain of von Willebrand factor binds to the active conformation of von Willebrand factor and blocks the interaction with platelet glycoprotein Ibalpha. J Thromb Haemost 2007;5:1363-1370.
12. Nishio K, Anderson PJ, Zheng XL, Sadler JE. Binding of platelet glycoprotein Ib alpha to von Willebrand factor domain A1 stimulates the cleavage of the adjacent domain A2 by ADAMTS13. Proc Natl Acad Sci U S A 2004;101:10578-10583.
13. Ulrichts H,Udvardy M, Lenting PJ, et al. Shielding of the A1 domain by the D′D3 domains of von Willebrand factor modulates its interaction with platelet glycoprotein Ib-IX-V. J Biol Chem 2006;281:4699-4707.
14. Savage B,Saldivar E,Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996;84:289-297.
15. Doggett TA, Girdhar G,Lawshe A, et al. Selectin-like kinetics and biomechanics promote rapid platelet adhesion in flow: the GPIb(alpha)-vWF tether bond. Biophys J 2002;83:194-205.
16. Mody NA, Lomakin O, Doggett TA, Diacovo TG, King MR. Mechanics of transient platelet adhesion to von Willebrand factor under flow. Biophys J 2005;88:1432-1443.
17. Yago T,Lou J, Wu T,et al. Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J Clin Invest 2008;118:3195-3207.
18. Simon F. De Meyer1, Hans Deckmyn1, and Karen Vanhoorelbeke, von Willebrand factor to the rescue, May 21, 2009; Blood: 113 (21)
19. López JA. The platelet glycoprotein Ib-IX complex. Blood Coagul Fibrinolysis. 1994;5:97-119.
20. Dong J-F, Li CQ, López JA. Tyrosine sulfation of the glycoprotein Ib-IX complex: Identification of sulfated residues and effect on ligand binding. Biochemistry. 1994;33:13946-13953.
21. Marchese P, Murata M, Mazzucato M, Pradella P, De Marco L, Ware J, Ruggeri ZM. Identification of three tyrosine residues of glycoprotein Iba with distinct roles in von Willebrand factor and a-thrombin binding. J Biol Chem. 1995;270:9571-9578.
22. Ware J. Molecular analysis of the platelet glycoprotein Ib-IX-V receptor. 1998;79: 466-478.
23. López JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard-Soulier syndrome. Blood. 1998;91:4397-4418.
24. Robert K. Andrews,1 Yang Shen,1 Elizabeth E. Gardiner,1 Jing-fei Dong,2 José A. López2 and Michael C. Berndt1, The Glycoprotein Ib-IX-V Complex in Platelet Adhesion and Signaling, Thrombosis and Haemostasis 82(2) 357 364 (1999)
25. Simon F. De Meyer1, Hans Deckmyn1, and Karen Vanhoorelbeke, von Willebrand factor to the rescue, May 21, 2009; Blood: 113 (21)
26. Angiolillo, D. J., Capodanno, D. & Goto, S. Platelet thrombin receptor antagonism and atherothrombosis. Eur. Heart J. 31, 17–28 (2010)
27. Francesco Franchi and Dominick J. Angiolillo, Novel antiplatelet agents in acute coronary syndrome, Nat. Rev. Cardiol. 12, 30–47 (2015)
28. Mann, K.G. et al. What is all that thrombin for?. J. Thromb. Haemost. 2003; 1: 1504–1514
29. Coughlin, S.R. Protease-activated receptors in vascular biology.
Thromb. Haemost. 2001; 86: 298–307
30. Jamieson, G.A. and Okumura, T. Reduced thrombin binding and aggregation in Bernard-Soulier platelets. J. Clin. Invest. 1978; 61: 861–864
31. Ganguly, P. Binding of thrombin to functionally defective platelets: a hypothesis on the nature of the thrombin receptor. Br. J. Haematol. 1977; 37: 47–51
32. Andrews, R.K. et al. The glycoprotein Ib–IX–V complex in platelet adhesion and signaling. Thromb. Haemost. 1999; 82: 357–364
33. Ramakrishnan, V. et al. A thrombin receptor function for platelet glycoprotein Ib–IX unmasked by cleavage of glycoprotein V. Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 1823–1828
34. Soslau, G. et al. Unique pathway of thrombin-induced platelet aggregation mediated by glycoprotein Ib. J. Biol. Chem. 2001; 276: 21173–21183
35. Adam, F. et al. Glycoprotein Ib-mediated platelet activation. A signalling pathway triggered by thrombin. Eur. J. Biochem. 2003; 270: 2959–2970
36. Ruggeri, Z.M. Von Willebrand factor. Curr. Opin. Hematol. 2003; 10: 142–149
37. Huizinga, E.G. et al. Structures of glycoprotein Ibα and its complex with von Willebrand A1 domain. Science. 2002; 297: 1128–1129
38. Uff, S. et al. Crystal structure of the platelet glycoprotein Ib (α) N-terminal domain reveals an unmasking mechanism for receptor activation. J. Biol. Chem. 2002; 277: 35657–35663
39. De Marco, L. et al. Function of glycoprotein Ib α in platelet activation induced by α thrombin. J. Biol. Chem. 1991; 266: 23776–23783
40. Jandrot-Perrus, M. et al. Thrombin interaction with platelet membrane glycoprotein Ib. Semin. Thromb. Hemost. 1996; 22: 151–156
41. Adam, F. et al. Thrombin-induced platelet PAR4 activation: role of glycoprotein Ib and ADP. J. Thromb. Haemost. 2003; 1: 798–804
42. De Candia, E. et al. Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. J. Biol. Chem. 2001; 276: 4692–4698
43. Morita, T., 2005b. Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and plateletmodulating
activities. Toxicon 45, 1099–1114
44. Ogawa, T., Chijiwa, T., Oda-Ueda, N., Ohno, M., 2005. Molecular diversity and accelerated evolution of C-type lectin-like proteins from snake venom. Toxicon 45, 1–14.
45. Clemetson, K.J., 2010. Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors. Toxicon 56, 1236–1246.
46. Chia-Hsin Yeh, Wen-Cheng Wang, Tsang-Tang Hsieh and Tur-Fu Huang, Agkistin, a Snake Venom-derived Glycoprotein Ib Antagonist, Disrupts von Willebrand Factor-Endothelial Cell Interaction and Inhibits Angiogenesis, doi: 10.1074/jbc.C000234200
47. von Willebrand EA. Hereditär pseudohemofili. Fin Laekaresaellsk Hand 1926;68:87-112.
48. Gresele P, Falcinelli E, Momi S ,Potentiation and priming of platelet activation: a potential target for antiplatelet therapy. Trends Pharmacol Sci. 2008 Jul; 29(7):352-60.
49. Lawrence L Horstman, Wenche Jy, Yeon S Ahn, Robert Zivadinov, Amir H Maghzi, Masoud Etemadifar, J Steven Alexander, and Alireza Minagar, Role of platelets in neuroinflammation: a wide-angle perspective, J Neuroinflammation. 2010; 7: 10
50. Semple, J.W. et al. Platelets and the immune continuum. Nat. Rev. Immunol. 11, 264–274 (2011).
51. Fitzgerald, J.R. et al. The interaction of bacterial pathogens with platelets.Nat. Rev. Microbiol. 4, 445–457 (2006).
52. Struyf, S. et al. Angiostatic and chemotactic activities of the CXC chemokine CXCL4L1 (platelet factor-4 variant) are mediated by CXCR3.Blood 117, 480–488 (2011).
53. Clark, S.R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463–469 (2007).
54. Colotta, F. et al. Expression of monocyte chemotactic protein-1 by monocytes and endothelial cells exposed to thrombin. Am. J. Pathol. 144, 975–985 (1994).
55. Xu, Z. et al. Coagulation factor X shields adenovirus type 5 from attack by natural antibodies and complement. Nat. Med. 19, 452–457 (2013).
56. Elzey, B.D. et al. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartmentsImmunity 19, 9–19 (2003).
57. Thrombin receptors activate G(o) proteins in endothelial cells to regulate intracellular calcium and cell shape changes, Vanhauwe JF, Thomas TO, Minshall RD, Tiruppathi C, Li A, Gilchrist A, Yoon EJ, Malik AB, Hamm HE., J Biol Chem. 2002 Sep 13;277(37):34143-9.
58. Protease-activated receptor-1 stimulates Ca(2+)-dependent Cl(-) secretion in human intestinal epithelial cells, Buresi MC, Schleihauf E, Vergnolle N, Buret A, Wallace JL, Hollenberg MD, MacNaughton WK., Am J Physiol Gastrointest Liver Physiol. 2001 Aug;281(2):G323-32.
59. Proteinase-activated receptors, Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R., Pharmacol Rev. 2001 Jun;53(2):245-82.
60. Mechanism of thrombin-induced angiogenesis, Maragoudakis ME, Tsopanoglou NE, Andriopoulou P., Biochem Soc Trans. 2002 Apr;30(2):173-7.
61. Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways, Wang H, Ubl JJ, Stricker R, Reiser G., Am J Physiol Cell Physiol. 2002 Nov;283(5):C1351-64.
62. Thrombin stimulation of vascular adhesion molecule-1 in endothelial cells is mediated by protein kinase C (PKC)-delta-NF-kappa B and PKC-zeta-GATA signaling pathways, Minami T, Abid MR, Zhang J, King G, Kodama T, Aird WC., J Biol Chem. 2003 Feb 28;278(9):6976-84
63. Thrombin receptor signaling to cytoskeleton requires Hsp90, Pai KS, Mahajan VB, Lau A, Cunningham DD., J Biol Chem. 2001 Aug 31;276(35):32642-7
64. Dancing with multiple partners, Woodside DG, Sci STKE 2002 Mar 19;2002(124)
65. Unique pathway of thrombin-induced platelet aggregation mediated by glycoprotein Ib, Soslau G, Class R, Morgan DA, Foster C, Lord ST, Marchese P, Ruggeri ZM., J Biol Chem. 2001 Jun 15;276(24):21173-83.
66. Alberto Mantovani & Cecilia Garlanda, Platelet-macrophage partnership in innate immunity and inflammation, Nature Immunology14,768–770(2013)
67. M Peng, W Lu, L Beviglia, S Niewiarowski, and EP Kirby, Echicetin: a snake venom protein that inhibits binding of von Willebrand factor and alboaggregins to platelet glycoprotein Ib, May 1, 1993; Blood: 81 (9)
68. Salvemini D, de Nucci G, Gryglewski RJ, Vane JR, Human neutrophils and mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor, Proc Natl Acad Sci U S A. 1989 Aug; 86(16): 6328–6332.
69. Barret, M. L., Willis, A. L. & Vane, J. R. (1989) Agents Actions, in press.
70. Chander, C. L., Moore, A. R., Desa, F. M., Howat, D. & Willoughby, D. A. (1988) J. Pharm. Pharmacol. 40, 745-746.
71. McCall, T., Whittle, B. J. R., Boughton-Smith, N. K. & Moncada, S. (1988) Br. J. Pharmacol. 95, 517P
72. Radomski, M. W., Palmer, R. M. J., Read, N. G. & Moncada, S. (1988) Thromb. Res. 50, 537-546.
73. Babior, B. M., Kipnes, R. S. & Curnutte, J. T. (1973) J. Clin. Invest. 52, 741-744.
74. Babior, B. M. (1978) N. Engl. J. Med. 298, 659-668.
75. Fantone, J. C. & Ward, P. A. (1982) Am. J. Pathol. 107, 397-418.
76. Weiss, S. J. (1983) in Handbook of Inflammation, eds. Ferreira, S. N. & Vane, J. R. (Springer, Berlin), pp. 37-84.
77. Brian Estevez, Kyungho Kim, M. Keegan Delaney, Aleksandra Stojanovic-Terpo, Bo Shen,Changgeng Ruan, Jaehyung Cho, Zaverio M. Ruggeri, and Xiaoping Du, Signaling-mediated cooperativity between glycoprotein Ib-IX and protease-activated receptors in thrombin-induced platelet activation, (Blood. 2016;127(5):626-636)
78. Chia-Hsin Yeh, Mei-Chi Chang, Hui-Chin Peng & ,Tur-Fu Huang, Pharmacological characterization and antithrombotic effect of agkistin, a platelet glycoprotein Ib antagonist, British Journal of Pharmacology (2001) 132, 843 – 850
79. De Candia E, Hall SW, Rutella S, Landolfi R, Andrews RK, De Cristofaro R. Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. J Biol Chem. 2001; 276(7):4692-4698.
80. Adam F, Guillin M-C, Jandrot-Perrus M. Glycoprotein Ib-mediated platelet activation. A signalling pathway triggered by thrombin. Eur J Biochem. 2003;270(14):2959-2970.
81. Ramakrishnan V, DeGuzman F, Bao M, Hall SW, Leung LL, Phillips DR. A thrombin receptor function for platelet glycoprotein Ib-IX unmasked by cleavage of glycoprotein V. Proc Natl Acad Sci USA. 2001;98(4):1823-1828
82. Brian Estevez, Kyungho Kim, M. Keegan Delaney, Aleksandra Stojanovic-Terpo, Bo Shen, Changgeng Ruan, Jaehyung Cho, Zaverio M. Ruggeri, and Xiaoping Du, Signaling-mediated cooperativity between glycoprotein Ib-IX and protease-activated receptors in thrombin-induced platelet activation, (Blood. 2016;127(5):626-636)
83. OUYANG, C., TENG, C.M. & HUANG, T.F. (1992). Characterization of snake venom components acting on blood coagulation and platelet function. Toxicon, 30, 945–966
84. HUANG, T.F., HOLT, J.C., LUKASIEWICZ, H. & NIEWIAROWSKI, S. (1987). Trigramin, a low molecular weight peptide inhibiting fibrinogen interaction with platelet receptor expressed on glycoprotein IIb-IIIa complex. J. Biol. Chem., 262, 16157–16163.
85. GOULD, G.J., POLOKOFF, M.A., FRIEDMAN, P.A., HUANG, T.F., HOLT, J.C., COOK, J.J. & NIEWIAROWSKI, S. (1990). Disintegrins: a family of integrin inhibitory protein from viper venoms. Proc. Soc. Exp. Biol. Med., 195, 168–171.
86. Huang, T.F., Liu, C.Z., Yang, S.H., 1995. Aggretin, a novel platelet-aggregation inducer from snake (Calloselasma rhodostoma) venom, activates phospholipase C by acting as a glycoprotein Ia/IIa agonist. Biochem. J. 309, 1021–1027.
87. Teng, C.M., Huang, T.F., 1991. Inventory of exogenous inhibitors of platelet aggregation. For the Subcommittee on Nomenclature of Exogenous Hemostatic Factors of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb. Haemost. 65, 624–626.
88. Teng, C.M., Hung, M.L., Huang, T.F., Ouyang, C., 1989. Triwaglerin: a potent platelet aggregation inducer purified from Trimeresurus wagleri snake venom. Biochim. Biophys. Acta 992, 258–264.
89. Hirabayashi, J., Kusunoki, T., Kasai, K., 1991. Complete primary structure of a galactose-specific lectin from the venom of the rattlesnake Crotalus atrox. Homologies with Ca2+-dependent-type lectins. J. Biol. Chem. 266, 2320–2326
90. Hennan JK, Swillo RE, Morgan GA, et al. Pharmacologic inhibition of platelet Vwf-GPIb alpha interaction prevents coronary artery thrombo¬sis. Thromb Haemost. 2006;95(3):469–475.
91. Knobl P, Jilma B, Gilbert JC, Hutabarat RM, Wagner PG, Jilma-Stohlawetz P. Anti-von Willebrand factor aptamer ARC1779 for refractory thrombotic thrombocytopenic purpura. Transfusion. 2009;49(10):2181–2185.
92. Peng M, Lu W, Beviglia L, Niewiarowski S, Kirby EP, Echicetin: a snake venom protein that inhibits binding of von Willebrand factor and alboaggregins to platelet glycoprotein Ib, Blood 1993 May 1;81(9):2321-8
93. Jianchun Chen, Kui Tan, Hairu Zhou, Hsuan-Fu Lo, Diana Tronik-Le Roux, Robert C Liddington & Thomas G Diacovo, Modifying murine von Willebrand factor A1 domain for in vivo assessment of human platelet therapies, Nat Biotechnol 2008 Jan;26(1):114-9
94. Yeung J, Holinstat M, Newer agents in antiplatelet therapy: a review, J Blood Med. 2012;3:33-42.
95. C-type lectin-like proteins from snake venoms Franziska T. Arlinghaus, Johannes A. Eble
96. Audrey Le Behot, Maxime Gauberti, Sara Martinez De Lizarrondo, Axel Montagne, Eloぴıse Lemarchand, Yohann Repesse, Sylvain Guillou, C´ecile V. Denis, Eric Maubert, Cyrille Orset, and Denis Vivien, GpIba-VWF blockade restores vessel patency by dissolving platelet aggregates formed under very high shear rate in mice, (Blood. 2014;123(21):3354-3363)
97. Jackson SP, Nesbitt WS, Westein E, Dynamics of platelet thrombus formation, J Thromb Haemost. 2009 Jul;7
98. Alexei Navdaev, Dagmar Doぴrmann, Jeannine M. Clemetson, and Kenneth J. Clemetson, Echicetin, a GPIb-binding snake C-type lectin from Echis carinatus, also contains a binding site for IgMk responsible for platelet agglutination in plasma and inducing signal transduction, Blood. 2001;97:2333
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48875-
dc.description.abstract蛇毒蛋白可抑制或活化血小板。多種蛇毒蛋白成份會專一性結合在血小板上的αIIbβ3,α5β1和αVβ3。另種蛇毒蛋白則作用於醣蛋白Ib和他主要的生理配體,von Willebrand factor (vWF)。
Snaclecs(蛇毒C型凝集素)具有與兩個α和β,通常由雙硫鍵共價連接異源二聚體的結構。 Agkistin是一個從百步蛇毒中純化而得的C型類凝血素蛋白家族之成員,其具有典型的α及β次單元。Snacle主要會作用在GPIb, GPVI, a2b1, Factor IX,而Agkistin是作用在醣蛋白Ib上。
本實驗中,透過離子交換的分析方式,從百步蛇原毒中純化出Agkistin,Agkistin皆能專一性的抑制由ristocetin所引發的醣蛋白Ib相關之血小板凝集。GPIb試驗的活化劑ristocetin卻無法在小鼠富含血小板血漿中引起凝集現象。因此我們使用了Gramicetin 替代,Gramicetin為一種vWF非依賴性的GPIb活化劑,也是純化自蛇毒,希望藉此作為小鼠模式之活化劑。不論在人類血小板懸浮液或富含血小板血漿中Agkistin 皆可以有效的抑制由Gramicetin所引起的血小板凝集現象,不過在於小鼠富含血小板血漿中Gramicetin僅呈現微小的活化現象,這一反應也可以藉由加入Agkistin 所抑制,除此之外,Agkistin也能部分抑制低濃度thrombin所引起的血小板凝集,也會抑制低濃度PAR1所引起的血小板凝集。
在小鼠體內的實驗測試,我們發現Agkistin會造成小鼠體內血小板減少的情形,也會延長小鼠尾部出血的時間,在重症聯合免疫缺陷小鼠( SCID mice)的體內也仍觀察到血小板減少的情形,在排除了免疫細胞T和B細胞的交互作用,Agkistin所引發的血小板低下,可能與血管中其他細胞所表現的受體產生的交互作用有關。在氯化鐵造成的血栓形成的動物模式中,我們觀察到Agkistin有濃度依賴性的延長血栓形成的時間,推論可能具有抗血栓的作用。
總之,Agkistin 是作用在血小板醣蛋白Ib上的拮抗劑,抑制血小板活化,它能部分抑制低濃度thrombin和完全抑制低濃度PAR-1 agonist造成的血小板活化。血栓形成的動物模式中,Agkistin有濃度依賴性延長血栓形成的時間,這些實驗結果解釋了Agkistin有抗血栓的作用機轉。但是它和其他醣蛋白Ib的拮抗劑一樣都會造成血小板低下,而原因需要進一步的探討,因此,藉由研究Agkistin,GPIb的拮抗劑在出血風險可以接受的範圍下,具有抗血栓活性與作用探討。
zh_TW
dc.description.abstractOne of the major targets for snake venom proteins is haemostasis. Snake venom proteins weaken the prey and help with swallowing and digestion. The venom proteins act either on coagulation factors or on platelets. Snake venom proteins often adapt physiological mechanisms to inhibit or activate platelets. The inhibitory mechanisms of these components are mainly directed against integrins, called disintegrin, which represent a family of low molecular weight, cysteine-rich polypeptides that bind specifically to integrins αIIbβ3, α5β1, and αvβ3 expressed on platelets and other cells. The other target is glycoprotein Ib, and its main physiological ligand, von Willebrand factor(vWF).
Snaclecs (Snake venom C-type lectins) have a typical heterodimeric structure with two subunits, α and β, usually linked covalently, via a disulphide bond. Agkistin, a heterodimer protein purified from the snake venom of Agkistrodon acutus, is highly homologous to those of C-type lectin GPIb-binding proteins. The molecular weight of Agkstin was determined as 32,512Da. As additional glycoprotein targets have received a fair amount of attention in the drive to develop novel approaches for antiplatelet intervention. GPIb-binding proteins may be the target to be concerned.
In vitro study, Agkstin concentration dependently inhibited platelet aggregation in human platelet-rich plasma and washed platelet suspension triggered by Ristocetin in the presence of vWF. Agkistin specifically inhibited human platelet aggregation and agglutination triggered by Ristocetin in the presence of vWF in vitro by acting as the platelet GPIb antagonist. Agkistin concentration-dependently inhibited platelet aggregation in mice PRP in response to Gramicetin. Agkstin also exhibited partial inhibition and decreased the oscillation and prolonged the latent period caused by thrombin (0.02 or 0.03U/mL). Moreover, Agkistin inhibited platelet aggregation caused by low concentration of PAR-1 agonist.
Furthermore, in order to evaluate Agkistin effect in vivo, we measured the platelet count and bleeding time of mice. It caused a dose-dependent decrease in platelet counts, however it didn’t cause a marked bleeding. We observed thrombocytopenia caused by Agkistin in the SCID mice, suggesting that the reduction in platelet count may not be related to T or B cells. In a FeCl3-injured thrombosis model, we measured carotid artery blood flow after ferric chloride injury, and found that Agkistin dose-dependently prolonged occlusion time. However, Agkistin did not cause a persistent bleeding (>10 min) side effect under the dosr of 30ng/g.
In summary, Agkistin, a GPIb antagonist, inhibits platelet agglutination. Agkistin exhibited partial inhibition and decreased the oscillation and prolonged the latent period caused by low concentration of thrombin (0.02-0.03U/mL) or PAR-1 agonist, and dose-dependently prolonged occlusion time in FeCl3-injured carotid artery in mice model. These data suggested that Agkistin has an antithrombotic effect. However, Agkistin rapidly causes thrombocytopenia like other GPIb-binding snake venoms in mice. The clear mechanism needs further investigation. Therefore, Agksitn may provide valuable information for the future development of GPIb antagonist.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:10:42Z (GMT). No. of bitstreams: 1
ntu-105-R03443015-1.pdf: 3522455 bytes, checksum: 675cd7b12e473942ceb8e9b0752639a7 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents i
Abbreviations v
Tables vii
Figures viii
中文摘要 xi
Abstract xiii
Chapter 1 Introduction 1
1.1 Platelet activation 1
1.2 GPIb-IX-V receptor complex and its ligands 2
1.3 Antiplatelet agents 5
1.4 GPIb in thrombin-induced platelet activation 6
1.5 Snake C-type Lectins (Snacles) 13
1.6 Agkistin 15
1.7 GPIb-binding snacles and thrombocytopenic effect 15
1.8 Platelet in inflammation 17
1.9 Aim of this study 20
Chapter 2 Materials and Methods 37
2.1 Materials 37
2.2Methods 38
2.2.1 Purification of GPIb inhibitor from Agkistrodon Acutus snake venom 38
2.2.2 BCA assay for protein quantification 39
2.2.3 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 39
2.2.4 Coomassie blue staining 39
2.2.5 Preparation of human platelet-rich plasma(PRP) and platelet suspension (PS) 40
2.2.6 Platelet aggregation 41
2.2.7 Histological examination 41
2.2.8 In vitro and ex vivo mouse platelet aggregation 42
2.2.9 Tail bleeding time in mice 42
2.2.10 latelet counts in mice 43
2.2.11 FeCl3 injury induced arterial thrombosis model 43
2.2.12 Animal model of stroke (MCAo) 44
2.2.13 Mice and human plasma exchange 45
2.2.14 Statistical analysis 46
Chapter 3 : Results 47
3.1 Purification of Agkistin from snake venom of Agkistrodon Acutus 47
3.2 Determnation of molecular mass of Agkistin 47
3.3 Inhibition of Agkistin on Ristocetin –induced platelet aggregation of human platelet-rich plasma 48
3.4 Inhibition of Agkistin on Ristocetin –induced platelet aggregation of human platelet suspension 48
3.5 Inhibition of Agkistin on Gramicetin –induced platelet aggregation of mouse platelet-rich plasma 49
3.6 The effects on ristocetin – induced mouse platelet aggregation by replacing mice plasma with human plasma 50
3.7 Effect of Agkistin on thrombin-induced platelet aggregation 50
3.8 Agkistin inhibits platelet aggregation caused by low concetration of PAR1 agonist 51
3.10 Effect of Agkistin on bleeding time in mice 52
3.11 Agkistin caused thrombocytopenia in mice 52
3.13 The antithrombotic activity of Agkistin in FeCl3 – injured mice model 53
3.14 The effects of Agkistin on tissue injury examined by histochemistry 53
3.15 The effects on of Agkistin on blood cell in mice 54
3.16 The effect of Agkistin on SCID mice in vivo 54
3.17 The effects of Agkistin in the MCAo – induced infarct volume in mice 55
Chapter 4 Discussion 78
Chapter 5 Conclusions and Perspectives 88
References 92
dc.language.isoen
dc.title百步蛇蛇毒蛋白 Agkistin 抗血栓活性與作用機轉探討zh_TW
dc.titleThe antithrombotic effects and action mechanisms of snake venom protein Agkistin, purified from Agkistrodon acutus venomen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧哲明(Che-Ming Teng),楊春茂(Chuen-Mao Yang),吳文彬(Wen-Bin Wu)
dc.subject.keyword血小板醣蛋白受體GPIb-IX-V,C型凝集素蛇毒蛋白,血小板低下,抗血栓,蛇毒蛋白,zh_TW
dc.subject.keywordsnacle,Agkistin,antithrombotic,snake venom protein,thrombocytopenia,platelet receptor GPIb-IX-V,en
dc.relation.page102
dc.identifier.doi10.6342/NTU201601206
dc.rights.note有償授權
dc.date.accepted2016-07-22
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved