Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48870
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李公哲
dc.contributor.authorYu-Hsuan Liuen
dc.contributor.author劉瑀萱zh_TW
dc.date.accessioned2021-06-15T11:10:37Z-
dc.date.available2017-02-08
dc.date.copyright2017-02-08
dc.date.issued2016
dc.date.submitted2016-08-17
dc.identifier.citationAJBaLR, F. (2001) Electrochemical Methods Fundamentals and Applications. In
John Wiley&Sonic.
AlMarzooqi, F. A., Al Ghaferi, A. A., Saadat, I., Hilal, N. (2014). Application of
Capacitive Deionisation in water desalination: A review. Desalination, 342, 3–15.
Biesheuvel, P. M., van der Wal, A. (2010). Membrane capacitive deionization.
Journal of Membrane Science, 346(2), 256–262.
Choi, J. H. (2010). Fabrication of a carbon electrode using activated carbon powder
and application to the capacitive deionization process. Sep. Purif. Technol., 70(3), 362–366.
Choi, J. Y., and Choi, J. H. (2010). A carbon electrode fabricated using a
poly(vinylidene fluoride) binder controlled the Faradaic reaction of carbonpowder. J. Ind. Eng. Chem, 16(3), 401–405.
Dai, K., Shi, L. Y., Fang, J. H., Zhang, D. S., Yu, B. K. (2005). NaCl adsorption in
multi-walled carbon nanotubes. Mater Lett., 59(16), 1989–1992.
El-Deen, A. G., Barakat, N. A. M., Kim, H. Y. (2014). Graphene wrapped
MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination, 344, 289–298.
E. Barsoukov, E., and Macdonald, J. R., (2005) Impedance Spectroscopy: Theory,
Experiment, and Applications, 2nd Edition. In John Wiley&Sonic.
Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W., Poco, J. F. (1996).
Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. J. Electrochem. Soc., 143(1), 159–169.
Feng, C., Hou, C.-H., Chen, S., Yu, C.-P. (2013). A microbial fuel cell driven
capacitive deionization technology for removal of low level dissolved ions. Chemosphere, 91(5), 623–628.
G. Ertl, G., Knözinger, H., Weitkamp, J. (1997) Handbook of Heterogeneous
Catalysis, 8 Volumes, 2nd Edition.
Hou, C. H., Huang, J. F., Lin, H. R., Wang, B. Y. (2012). Preparation of activated
carbon sheet electrode assisted electrosorption process. J. Taiwan Inst. ChemEng., 43(3), 473–479.
Hou, C. H., Liang, C. D., Yiacoumi, S., Dai, S., Tsouris, C. (2006). Electrosorption
capacitance of nanostructured carbon-based materials. J. Colloid Interface Sci., 302(1), 54–61.
Hu, C. C., and Wang, C. C. (2003). Nanostructures and capacitive characteristics of
hydrous manganese oxide prepared by electrochemical deposition. J. Electrochem. Soc., 150(8), A1079–A1084.
Hu, C. Z., Liu, F. Y., Lan, H. C., Liu, H. J., Qu, J. H. (2015). Preparation of a
manganese dioxide/carbon fiber electrode for electrosorptive removal of copper ions from water. J. Colloid Interface Sci., 446, 359–365.
Huang, Y., Liang, J. J., Chen, Y. S. (2012). An Overview of the Applications of
Graphene-Based Materials in Supercapacitors. Small, 8(12), 1805–1834.
Humplik, T., Lee, J., O'Hern, S. C., Fellman, B. A., Baig, M. A., Hassan, S. F.,
Wang, E. N. (2011). Nanostructured materials for water desalination. Nanotechnology, 22(29).
Kim, Y. J., and Choi, J. H. (2010). Improvement of desalination efficiency in
capacitive deionization using a carbon electrode coated with an ion-exchange polymer. Water Res., 44(3), 990–996.
Lee, H. Y., Kim, S. W., Lee, H. Y. (2001). Expansion of active site area and
improvement of kinetic reversibility in electrochemical pseudocapacitor electrode. Electrochem. Solid-State Lett, 4(3), A19–A22.
Leonard, K. C., Genthe, J. R., Sanfilippo, J. L., Zeltner, W. A., Anderson, M. A.
(2009). Synthesis and characterization of asymmetric electrochemical capacitive deionization materials using nanoporous silicon dioxide and magnesium doped aluminum oxide. Electrochim. Acta, 54(22), 5286–5291.
Li, H. B., and Zou, L. (2011). Ion-exchange membrane capacitive deionization: A
new strategy for brackish water desalination. Desalination, 275(1–3), 62–66.
Li, H. B., Zou, L. D., Pan, L. K., Sun, Z. (2010). Novel graphene-like electrodes for
capacitive deionization. Environ. Sci. Technol., 44(22), 8692–8697.
Li, L., Hu, Z. A., An, N., Yang, Y. Y., Li, Z. M., Wu, H. Y. (2014). Facile synthesis of
MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J. Phys. Chem. C, 118(40), 22865–22872.
Li, Z., Song, B., Wu, Z.K., Lin, Z.Y., Yao, Y.G., Moon, K.S., Wong, C.P. (2015) 3D
porous graphene with ultrahigh surface area for microscale capacitive deionization. Nano Energ., 11, 711–718.
Lin, C., Ritter, J. A., Popov, B. N. (1999). Correlation of double-layer capacitance
with the pore structure of sol-gel derived carbon xerogels. J. Electrochem. Soc., 146(10), 3639–3643.
Lin, Z., Ji, L. W., Woodroof, M. D., Zhang, X. W. (2010). Electrodeposited
MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries. J. Power Sources, 195(15), 5025–5031.
Ma, S. B., Nam, K. W., Yoon, W. S., Yang, X. Q., Ahn, K. Y., Oh, K. H., Kim, K. B.
(2008). Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J. Power Sources, 178(1), 483–489.
Manocha, S. M. (2003). Porous carbons. Sadhana-Acad. Proc. Eng. Sci, 28, 335–348.
Minhas, M. B., Jande, Y. A. C., Kim, W. S. (2014). Combined reverse osmosis and
constant-current operated capacitive deionization system for seawater desalination. Desalination, 344, 299–305.
Myint, M. T. Z., Dutta, J. (2012). Fabrication of zinc oxide nanorods modified
activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach. Desalination, 305, 24–30.
Nadakatti, S., Tendulkar, M., Kadam, M. (2011). Use of mesoporous conductive
carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology. Desalination, 268(1–3), 182–188.
Noked, M., Avraham, E., Bohadana, Y., Soffer, A., Aurbach, D. (2009).
Development of Anion Stereoselective, Activated carbon molecular sieve electrodes prepared by chemical vapor deposition. J. Phys. Chem. C, 113(17), 7316–7321.
Oren, Y. (2008). Capacitive delonization (CDI) for desalination and water treatment
– past, present and future (a review). Desalination, 228(1–3), 10–29.
Pang, S. C., Anderson, M. A., & Chapman, T. W. (2000). Novel electrode materials
for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc., 147(2), 444–450.
Papastefanou, C., Stoulos, S., Ioannidou, A., Manolopoulou, A. (2006). The
application of phosphogypsum in agriculture and the radiological impact. J. Environ. Radioact., 89(2), 188–198.
Park, B. H., and Choi, J. H. (2010). Improvement in the capacitance of a carbon
electrode prepared using water-soluble polymer binder for a capacitive deionization application. Electrochim. Acta, 55(8), 2888–2893.
Park, K. K., Lee, J. B., Park, P. Y., Yoon, S. W., Moon, J. S., Eum, H. M., Lee, C. W.
(2007). Development of a carbon sheet electrode for electrosorption desalination. Desalination, 206(1–3), 86–91.
Porada, S., Zhao, R., van der Wal, A., Presser, V., Biesheuvel, P. M. (2013). Review
on the science and technology of water desalination by capacitive deionization. Prog. Mater Sci., 58(8), 1388–1442.
Ryoo, M. W., and Seo, G. (2003). Improvement in capacitive deionization function
of activated carbon cloth by titania modification. Water Res., 37(7), 1527–1534.
Seo, S. J., Jeon, H., Lee, J. K., Kim, G. Y., Park, D., Nojima, H., Moon, S. H.
(2010). Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res., 44(7), 2267–2275
Simon, P., and Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nat.
Mater., 7(11), 845–854.
Toupin, M., Brousse, T., Belanger, D. (2004). Charge storage mechanism of MnO2
electrode used in aqueous electrochemical capacitor. Chem. Mater., 16(16), 3184–3190.
Wanger, C. D., Riggs M., Davis, L. E., Moulder J. F., Muilenberg, G. E. (1979).
Handbook of X-ray photoelectron spectroscopy, physical electronics division. Perkin-Elmer Corp.
Walker, P. J., Mauter, M. S., Whitacre, J. F. (2015). Electrodeposited MnO2 for
pseudocapacitive deionization: relating deposition condition and electrode structure to performance. Electrochim. Acta, 182, 1008–1018.
Wang, H., Zhang, D., Yan, T., Wen, X., Zhang, J., Shi, L., Zhong, Q. (2013).
Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. J. Mater. Chem. A, 1(38), 11778–11789.
Wang, H., Shi, L. , Yan, T. , Zhang, J., Zhong, Q., Zhang, D. (2014). Design of
graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization. J. Mater. Chem. A, 2(13), 4739–4750.
Wang, H.; Yan, T.; Liu, P.; Chen, G.; Shi, L.; Zhang, J.; Zhong, Q.; Zhang, D. (2016)
In situ creating interconnected pores across 3D graphene architectures and their application as high performance electrodes for flow-through deionization capacitors. J. Mater. Chem. A, 4(13), 4908–4919.
Wang, J. W., Chen, Y., Chen, B. Z. (2015). A synthesis method of MnO2/activated
carbon composite for electrochemical supercapacitors. J. Electrochem. Soc., 162(8), A1654–A1661.
Wang, X. Z., Li, M. G., Chen, Y. W., Cheng, R. M., Huang, S. M., Pan, L. K., Sun,
Z. (2006). Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes. Appl. Phys. Lett., 89(5).
Welgemoed, T. J., and Schutte, C. F. (2005). Capacitive delonization technology
(TM) : an alternative desalination solution. Desalination, 183(1–3), 327–340.
Wen, X., Zhang, D., Shi, L., Yan, T., Wang, H., Zhang, J. (2012). Three-dimensional
hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization. J. Mater. Chem., 22(45), 23835–23844.
Wen, X., Zhang, D., Yan, T., Zhang, J., Shi, L. (2013). Three-dimensional
graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization. J. Mater. Chem. A, 1(39), 12334–12344.
Wouters, J. J., Lado, J. J., Tejedor-Tejedor, M. I., Perez-Roa, R., Anderson, M. A.
(2013). Carbon fiber sheets coated with thin-films of SiO2 and gamma-Al2O3 as electrodes in capacitive deionization: Relationship between properties of the oxide films and electrode performance. Electrochim. Acta,, 112, 763–773.
X-ray Diffraction — II. Institute of Physics
http://physik2.uni-goettingen.de/research/2_hofs/methods/XRD.
Yang, J., Zou, L. D., Song, H. H. (2012). Preparing MnO2/PSS/CNTs composite
electrodes by layer-by-layer deposition of MnO2 in the membrane capacitive deionisation. Desalination, 286, 108–114.
Yang, J., Zou, L. D., Song, H. H., Hao, Z. P. (2011). Development of novel
MnO2/nanoporous carbon composite electrodes in capacitive deionization technology. Desalination, 276(1-3), 199–206.
Yeh, C.L., Hsi, H.C., Li, K.C., Hou, C.H. (2015). Improved performance in
capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination, 367, 60–68.
Yu, G. H., Hu, L. B., Vosgueritchian, M., Wang, H. L., Xie, X., McDonough, J. R.,
Bao, Z. N. (2011). Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett, 11(7), 2905–2911.
Zhang, D. S., Yan, T. T., Shi, L. Y., Peng, Z., Wen, X. R., Zhang, J. P. (2012).
Enhanced capacitive deionization performance of graphene/carbon nanotube composites. J. Mater. Chem., 22(29), 14696–14704.
Zhang, L. L., and Zhao, X. S. (2009). Carbon-based materials as supercapacitor
electrodes. Chem. Soc. Rev., 38(9), 2520–2531.
Zou, L. D., Li, L. X., Song, H. H., Morris, G. (2008). Using mesoporous carbon
electrodes for brackish water desalination. Water Res., 42(8–9), 2340–2348.
胡啟章. (2011) 電化學原理與方法(二版)﹕五南圖書出版股份有限公司.
立本英機、安部郁夫. (2002) 活性碳的應用技術﹕東南出版社.
科技部貴儀中心
https://vi.most.gov.tw/nsc-vi/index/listViCenter.action.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48870-
dc.description.abstract電容去離子技術(Capacitive deionization, CDI)為近年來備受關注的新穎水處理技術,其原理為藉由電吸附程序去除水中帶電離子,具有操作及維護簡便、無二次汙染、低能量消耗與可逆性等優點。CDI操作原理最早為提供電壓於電極上,利用高比表面積之孔洞碳材作為電極使電極表面形成電雙層(Electrical
double-layer, EDL),以電吸附的方式將離子儲存於電雙層中。然而現階段所製備之孔洞碳材電極受限於低電容值與低電吸附容量等問題而阻礙CDI技術之發展。二氧化錳因具有價格低廉、對環境友善性且擁有相當高的理論比電容值(1370 F g-1),故常作為應用於超級電容器之電極材料。由於超級電容器與CDI工作原理相近,若能於施加電壓下透過二氧化錳與特定離子完成快速且可逆的法拉第氧化還原反應進行吸附,便能以擬電容(Pusudocapacitance)為基礎提升整體電容進而提升電吸附容量。
本研究目的為製備二氧化錳/活性碳複合電極材料,透過循環伏安之陽極沉積法在特定的電解質濃度以循環伏安法控制沉積圈數將最佳之二氧化錳沉積量覆蓋於活性碳表面。後將製備完成之複合電極材料進行材料表面分析及電化學特性分析。以掃描式電子顯微鏡暨能量散射光譜儀(Scanning electron microscope & Energy dispersive spectrometer)、X光電子光譜儀(X-ray photoelectron spectrometer)、X光繞射光譜儀(X-ray powder diffractometer)等進行材料表面分析﹔而以循環伏安法(Cyclic voltammetry)、定電流充放電(Glavanostatic charge/discharge)、交流電阻抗分析(Electrochemical impedance spectroscopy)進行電化學特性分析。
最後將製備之二氧化錳/活性碳複合電極材料置於CDI系統的陽極,利用於施加電壓下二氧化錳與鈉離子的嵌入反應進行CDI實驗。結果證實於1.0 V之施加電壓、0.01M的氯化鈉水溶液中,此二氧化錳/活性碳複合材料之吸附容量為9.3 mg g-1,較以傳統活性碳材料為電極提升近一倍(5.7 mg g-1)。由此可知,本研究結果證實將活性碳表面修飾,以結合電雙層電容與假性電容兩種方式,大幅提升了CDI實驗的脫鹽效能。
zh_TW
dc.description.abstractWith climate change and growth of the population, water scarcity is being considered as a serious problem. In response, water desalination technologies can resolve this promising issue Capacitive deionization (CDI) is a promising water purification technology. Currently, most of CDI devices rely on the utilization of porous carbon electrodes with high specific surface area to electrostatically adsorb ions. In this case, the ions are stored at the electrode/electrolyte interface by electrical double layer (EDL) formation. However, the porous carbon electrodes based on EDL capacitance may suffer from the limitation of electrosorption capacity on targeted ions. Manganese dioxide (MnO2) is often preferred as an active material in supercapacitors for its low cost, non-toxic, and high theoretical capacitance. Most recently, significant efforts have been made on the development of MnO2-porous carbon composite as the electrodes of supercapacitors. Due to the similar working principle of CDI and supercapacitors, the fast and reversible redox-active of MnO2 can ensure the high capacitive behavior to intercalate the specific cations, as well as making the best use of the large pseudocapacitive charge to pursue higher adsorption capacity.
Our main object is to develop the MnO2/activated carbon (AC) composite electrodes for enhancing the salt adsorption capacity of CDI cells through the redox-mediated active material of MnO2. Our study uses the anodic electrodeposition method to tune the thickness of MnO2, making the full utilization of MnO2 for the mix-faradaic reactions and retaining the sufficient conductivity and porosity of AC in CDI. The resultant MnO2/AC composite electrodes are characterized by surface morphology, electrochemical properties, and CDI performance. Material characterization (i.e., Scanning electron microscope, X-ray photonelectron spectrosmeter, and X-ray powder diffraction) confirms the presence of MnO2 coated on the AC surface. Cyclic voltammetry, galvanostatic charge/discharge curve, and electrochemical impedance spectra measurements are conducted to determine the specific capacitance and electrical conductivity of MnO2-AC electrode. A pair of batch-mode CDI cells is further performed at an applied voltage of 1.0 V for desalting 0.01M NaCl solution for capacitive desalination. The MnO2/AC is used as a cathode for the EDL formation and Na-intercalation of MnO2.
According to the results, the salt adsorption capacity of MnO2/AC electrode is determined to be 9.3 mg g-1, which is about 1.6-fold higher than the AC electrode (5.7 mg g-1). Consequently, by taking the advantage of combination with fast faradaic reactions and double-layer charging, modification of porous AC materials with MnO2 is an emerging approach to achieve high CDI performance.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:10:37Z (GMT). No. of bitstreams: 1
ntu-105-R03541113-1.pdf: 2877201 bytes, checksum: 0f276a3c81a9dba687729ed01789f394 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents摘要……………………………………………………………………………………………………..i
Abstract…………………………………………………………………………………………..ii
圖目錄……………………………………………………………………………………………..し
表目錄………………………………………………………………………………………………….す第一章 緒論…………………………………………………………………………………….1
第二章 文獻回顧…………………………………………………………………………….4
2.1電化學原理…………………………………………………………………………….4
2.1.1電化學反應系統………………………………………………………….4
2.1.2影響電化學反應系統的變數……………………………………….7
2.1.3法拉第反應與非法拉第反應……………………………………….8
2.2電容器之種類與運作機制………………………………………………………9
2.2.1電雙層電容器………………………………………………………………9
2.2.2擬電容器……………………………………………………………………13
2.3電容去離子技術………………………………………………………………….15
2.3.1電容去離子技術工作原理………………………………………15
2.3.2電容去離子技術之應用發展…………………………………….18
2.4電極材料之選擇………………………………………………………………….20
2.4.1碳材孔洞的結構與電化學特性…………………………………20
2.4.2孔洞碳材……………………………………………………………………22
2.4.3金屬氧化物之複合碳材…………………………………………….26
2.5二氧化錳複合碳電極材料製備………………………………………...29
2.5.1二氧化錳介紹與其複合材料製備…….………………………29
第三章 實驗方法…………………………………………………………………………..31
3.1實驗材料與藥品…………………………………………………………………31
3.2實驗儀器與設備……………………………………………………………...32
3.3實驗流程圖………………………………………………………………………..34
3.4電極製備方法…………………………………………………………………….35
3.4.1碳電極製備……………………………………………………………..35
3.4.2二氧化錳/活性碳複合電極材料製備………………………..36
3.5電極材料物理特性分析…………………………………………………….37
3.5.1比表面積與孔徑分布儀…………………………………………….37
3.5.2熱重分析儀……………………………………………………………..40
3.6電極材料表面型態與特性分析…………………………………………41
3.6.1場發射式掃描電子顯微鏡暨能量散射光譜儀………….41
3.6.2 X光繞射光譜儀………………………………………………………….42
3.6.3 X光光電子光譜儀……………………………………………………43
3.6.4接觸角儀……………………………………………………………………44
3.7電極材料電化學特性分析…………………………………………….….44
3.7.1循環伏安法……………………………………………………………..44
3.7.2定電流充放電………………………………………………………….47
3.7.3交流電阻抗分析………………………………………………………..49
3.7.4穩定性分析……………………………………………………………..53
3.8電吸附批次實驗………………………………………………………………….53
3.8.1氯化鈉溶液濃度檢測…………………………………………….....55
3.8.2電吸附容量……………………………………………………………..56
3.8.3充電效率……………………………………………………………………57
第四章 實驗結果與討論……………………………………………………………….58
4.1 MnO2/AC之最佳沉積圈數……………………………………………….58
4.2 MnO2/AC之物理特性分析…………………………………………………61
4.2.1表面積分析與孔徑分布………………………………….………………61
4.2.2熱重分析…………………………………………………………………..65
4.3 MnO2/AC之表面形態與特性分析……………………………………66
4.3.1表面形態鑑定………………………………………………….66
4.3.2 X光繞射鑑定……………………………………………………………..68
4.3.3元素化學鑑定形態鑑定…………………………………………….69
4.3.4親水性試驗……………………………………………………………..74
4.4 MnO2/AC之電化學特性分析……………………………………………..75
4.4.1循環伏安行為………………………………………………………….75
4.4.2定電流充放電行為………………………………………………….78
4.4.3交流阻抗分析………………………………………………………….80
4.4.4穩定性分析……………………………………………………………..82
4.5 MnO2/AC之電吸附實驗…………………………………………………..83
4.5.1脫鹽能力評估…………………………………………………………83
4.5.2連續之電吸附實驗…………………….……………………………..86
第五章 結論與建議………………………………………………………………………89
5.1結論…………………………………………………………………………………….89
5.2建議…………………………………………………………………………………….91
第六章 參考文獻………………………………………………………………………….92
dc.language.isozh-TW
dc.subject嵌入zh_TW
dc.subject電容去離子技術zh_TW
dc.subject電吸附zh_TW
dc.subject法拉第氧化還原反應zh_TW
dc.subject擬電容zh_TW
dc.subjectpsuedocapacitanceen
dc.subjectelectrosorptionen
dc.subjectCapacitive deionizationen
dc.subjectmix-faradaic reactionen
dc.subjectintercalationen
dc.title以二氧化錳/活性碳複合電極材料提升電容去離子技術之研究zh_TW
dc.titleDevelopment of Manganese Dioxide/Activated Carbon Composite Electrodes for Enhancing Capacitive Deionization Performanceen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.coadvisor侯嘉洪
dc.contributor.oralexamcommittee席行正,林進榮
dc.subject.keyword電容去離子技術,電吸附,法拉第氧化還原反應,擬電容,嵌入,zh_TW
dc.subject.keywordCapacitive deionization,mix-faradaic reaction,intercalation,psuedocapacitance,electrosorption,en
dc.relation.page98
dc.identifier.doi10.6342/NTU201602806
dc.rights.note有償授權
dc.date.accepted2016-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved