請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48869完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余化龍(Hwa-Long Yu) | |
| dc.contributor.author | Yen-Wen Chen | en |
| dc.contributor.author | 陳彥文 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:10:36Z | - |
| dc.date.available | 2020-08-18 | |
| dc.date.copyright | 2017-02-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-18 | |
| dc.identifier.citation | Akaike H. (1974) A new look at the statistical model identification. Automatic Control, IEEE Transactions on, 19, 716-723.
Allan J.D. (2004) Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematics, 35, 257-284. Angermeier P.L. & Schlosser I.J. (1989) Species-Area Relationship for Stream Fishes. Ecology, 70, 1450-1462. Angermeier P.L. & Winston M.R. (1998) Local vs. regional influences on local diversity in stream fish communities of Virginia. Ecology, 79, 911-927. Anh B. (2012) Spinibarbus hollandi. The IUCN Red List of Threatened Species. Ayele D.G., Zewotir T.T. & Mwambi H.G. (2015) Structured additive regression models with spatial correlation to estimate under-five mortality risk factors in Ethiopia. Bmc Public Health, 15, 12. Bain M.B., Finn J.T. & Booke H.E. (1985) A Quantitative Method for Sampling Riverine Microhabitats by Electrofishing. North American Journal of Fisheries Management, 5, 489-493. Bogaert P. & Dimitri D.O. (2002) Estimating soil properties from thematic soil maps: the Bayesian maximum entropy approach. Soil Science Society of America Journal, 66, 1492-1500. Bogaert P. & Fasbender D. (2008) Nonlinear spatial prediction with non-Gaussian data: a maximum entropy viewpoint. In: geoENV VI–Geostatistics for Environmental Applications pp. 445-455. Springer. Britton J.R., Boar R.R., Grey J., Foster J., Lugonzo J. & Harper D.M. (2007) From introduction to fishery dominance: the initial impacts of the invasive carp Cyptinus carpio in Lake Naivasha, Kenya, 1999 to 2006. Journal of Fish Biology, 71, 239-257. Chen I.S. (2014) Developmental program of Metzia mesembrinum restoration in Taiwan – A study of freshwater fishes and habitat restoration in Taiwan. Chen I.S., Bai J.C., Han C.C. & Fang L.S. (2016) The complete mitochondrial genome of Holland's spinibarbel Spinibarbus hollandi Oshima (Cypriniformes, Cyprinidae). Mitochondrial DNA, 27, 1721-1723. Chen I.S., Fang L.S. (1999) The Freshwater and Estuarine Fishes of Taiwan, National Museum of Marine Biology & Aquarium, Pingtung, Taiwan. Chen I.S., Tzeng C. S., Shao, K. T. (2012) Red Data Book of freshwater Fishes in Taiwan, Forestry Bureau, COA, Executive Yuan. Chilton E.W. & Muoneke M.I. (1992) Biology and Management of Grass Carp (Ctenopharyngodon idella, Cyprinidae) for Vegetation Control - a North-American Perspective. Reviews in Fish Biology and Fisheries, 2, 283-320. Christakos G. (1990) A Bayesian/maximum-entropy view to the spatial estimation problem. Mathematical Geology, 22, 763-777. Christakos G. (1991) Some Applications of the Bayesian, Maximum-Entropy Concept in Geostatistics. In: Maximum Entropy and Bayesian Methods: Laramie, Wyoming, 1990. (Eds W.T. Grandy & L.H. Schick), pp. 215-229. Springer Netherlands, Dordrecht. Christakos G. & Li X. (1998) Bayesian maximum entropy analysis and mapping: A farewell to kriging estimators? Mathematical Geology, 30, 435-462. Christakos G. & Olea R.A. (2005) New space-time perspectives on the propagation characteristics of the Black Death epidemic and its relation to bubonic plague. Stochastic Environmental Research and Risk Assessment, 19, 307-314. Christakos G. & Serre M.L. (2000) BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmospheric Environment, 34, 3393-3406. Christiane Belitz A.B., Nadja Klein, Thomas Kneib, Stefan Lang, Nikolauf Umlauf. (2015) BayesX - Bayesian Inference in Structured Additive Regression Models. Cianfrani C., Le Lay G., Hirzel A.H. & Loy A. (2010) Do habitat suitability models reliably predict the recovery areas of threatened species? Journal of Applied Ecology, 47, 421-430. Coombs S. (1999) Signal detection theory, lateral-line excitation patterns and prey capture behaviour of mottled sculpin. Animal Behaviour, 58, 421-430. Corp. I. (2012) IBM SPSS Statistics 20 documentation. Crossman E. & Cudmore B. (1999) Summary of North American fish introductions through the aquarium/horticulture trade. Nonindigenous freshwater organisms: vectors, biology and impacts. Lewis Publishers, Boca Raton, 129-134. Dimitri D.O., Bogaert P. & Christakos G. (2001) Application of the BME approach to soil texture mapping. Stochastic Environmental Research and Risk Assessment, 15, 87-100. Dong S.L. & Li D.S. (1994) Comparative-Studies on the Feeding Selectivity of Silver Carp Hypophthalmichthys molitrix and Bighead Carp Aristichthys nobilis. Journal of Fish Biology, 44, 621-626. Elliott J.A., Henrys P., Tanguy M., Cooper J. & Maberly S.C. (2015) Predicting the habitat expansion of the invasive roach Rutilus rutilus (Actinopterygii, Cyprinidae), in Great Britain. Hydrobiologia, 751, 127-134. Esselman P.C. & Allan J.D. (2010) Relative influences of catchment- and reach-scale abiotic factors on freshwater fish communities in rivers of northeastern Mesoamerica. Ecology of Freshwater Fish, 19, 439-454. Fahrmeir L., Kneib T. & Lang S. (2004) Penalized structured additive regression for space-time data: A Bayesian perspective. Statistica Sinica, 14, 731-761. Fahrmeir L. & Lang S. (2001) Bayesian inference for generalized additive mixed models based on Markov random field priors. Journal of the Royal Statistical Society Series C-Applied Statistics, 50, 201-220. Ferber D. (2001) Will black carp be the next zebra mussel? Science, 292, 203-203. Fuller P.L., Nico L.G. & Williams J.D. (1999) Nonindigenous fishes introduced into inland waters of the United States. 1ASSESSMENT AND MANAGEMENT OF ALIEN SPECIES THAT THREATEN, 27. Gorman O.T. & Karr J.R. (1978) Habitat Structure and Stream Fish Communities. Ecology, 59, 507-515. Gourdin M. (1969) Lagrangian formalism and symmetry laws, Gordon and Breach. Guisan A. & Harrell F.E. (2000) Ordinal response regression models in ecology. Journal of Vegetation Science, 11, 617-626. Guo R.L. (2011) The relationships between fish assemblages and stream habitats in Kaoping River Basin. Master, National University of Tainan, Tainan. Han R., Chen Q.W., Blanckaert K., Li W.M. & Li R.N. (2013) Fish (Spinibarbus hollandi) dynamics in relation to changing hydrological conditions: physical modelling, individual-based numerical modelling, and case study. Ecohydrology, 6, 586-597. Hastie Tj T.R. (1990) Generalized Additive Models, Chapman and Hall, London. He D.R. & Tasi H.T. (1999) Fish behaviour, The Sueichan Press. He T.C., Chuang M.T., Chou W.C., Chang S.T., Yeh M.F., Li T.W. & Lin K.H. (2010) A Study of Biotic Indicators and Habitat Suitability Curves. Jaynes E.T. (1957) Information Theory and Statistical Mechanics. Physical Review, 106, 620-630. Kneib T. (2006) Mixed model based inference in structured additive regression. Ph.D., LMU Munich. Ku S.C. (2010) Development of Bayesian Maximum Entropy Method Toolbox on Quantum GIS—An Application of Long-term Exposure Estimation of Particulate Matter in Taiwan. Master, National Taiwan University. Lehmann A., Overton J.M. & Leathwick J.R. (2002) GRASP: generalized regression analysis and spatial prediction. Ecological Modelling, 157, 189-207. Lin H.D. (2008) Phylogeography of Cyprinidae fishes in Taiwan and mainland China. Ph.D., National Cheng Kung University, Tainan. Liu K.W. (2008) The study on Planning of Ecological Pond from Fish Habitat Demand. Master, National Taiwan University, Taipei. Mandrak N.E. & Secretariat C.S.A. (2004) Risk assessment for Asian carps in Canada, Canadian Science Advisory Secretariat/Secrétariat canadien de consultation scientifique. Mccullagh P N.J. (1997) Generalized Linear Models, Chapman and Hall, London. Miller J. & Franklin J. (2002) Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence. Ecological Modelling, 157, 227-247. Mueller R. & Pyron M. (2010) Fish Assemblages and Substrates in the Middle Wabash River, USA. Copeia, 47-53. Niglio M. & Perna C. (2003) Kernel smoothing for the analysis of climatic data. Quaderni di statistica, 5. Oshima M. (1919) Contributions to the study of the fresh water fishes of the island of Formosa. 12, 169-328. Pardo-Igúzquiza E. (1999) VARFIT: a Fortran-77 program for fitting variogram models by weighted least squares. Computers & Geosciences, 25, 251-261. Pata M.P., Kneib T., Cadarso-Suarez C., Lustres-Perez V. & Fernandez-Pulpeiro E. (2012) Categorical structured additive regression for assessing habitat suitability in the spatial distribution of mussel seed abundance. Environmetrics, 23, 75-84. Perrow M.R., Jowitt A.J.D., Leigh S.a.C., Hindes A.M. & Rhodes J.D. (1999) The stability of fish communities in shallow lakes undergoing restoration: expectations and experiences from the Norfolk Broads (U.K.). In: Shallow Lakes ’98: Trophic Interactions in Shallow Freshwater and Brackish Waterbodies. (Eds N. Walz & B. Nixdorf), pp. 85-100. Springer Netherlands, Dordrecht. Peterson E.E., Theobald D.M. & Hoef J.M.V. (2007) Geostatistical modelling on stream networks: developing valid covariance matrices based on hydrologic distance and stream flow. Freshwater Biology, 52, 267-279. Pinto L., Chandrasena N., Pera J., Hawkins P., Eccles D. & Sim R. (2005) Managing invasive carp (Cyprinus carpio L.) for habitat enhancement at Botany Wetlands, Australia. Aquatic Conservation-Marine and Freshwater Ecosystems, 15, 447-462. Poff N.L. & Ward J.V. (1989) Implications of Streamflow Variability and Predictability for Lotic Community Structure: A Regional Analysis of Streamflow Patterns. Canadian Journal of Fisheries and Aquatic Sciences, 46, 1805-1818. Portt C.B., Coker G.A., Ming D.L. & Randall R.G. (2006) A review of fish sampling methods commonly used in Canadian freshwater habitats. (Ed F.a.O. Canada). Roccwb. (2015). Central Weather Bureau, ROC. Scheffer M., Van Geest G., Zimmer K., Jeppesen E., Søndergaard M., Butler M., Hanson M., Declerck S. & De Meester L. (2006) Small habitat size and isolation can promote species richness: second‐order effects on biodiversity in shallow lakes and ponds. Oikos, 112, 227-231. Schiemer F. (2000) Fish as indicators for the assessment of the ecological integrity of large rivers. Hydrobiologia, 422, 271-278. Schlosser I.J. (1982) Fish Community Structure and Function along Two Habitat Gradients in a Headwater Stream. Ecological Monographs, 52, 395-414. Schlosser I.J. (1991) Stream fish ecology: a landscape perspective. Bioscience, 41, 704-712. Schlosser I.J. (1995) Critical landscape attributes that influence fish population dynamics in headwater streams. In: The importance of aquatic-terrestrial ecotones for freshwater fish pp. 71-81. Springer. Shao K.T. (2016) The Fish Database of Taiwan. Shen S.C. (1993) Fishes of Taiwan, Department of Animal Science and Technology. National Taiwan University, Taipei. Stachowicz J.J. (2001) Mutualism, Facilitation, and the Structure of Ecological Communities Positive interactions play a critical, but underappreciated, role in ecological communities by reducing physical or biotic stresses in existing habitats and by creating new habitats on which many species depend. Bioscience, 51, 235-246. Statzner B., Gore J.A. & Resh V.H. (1988) Hydraulic Stream Ecology: Observed Patterns and Potential Applications. Journal of the North American Benthological Society, 7, 307-360. Tang Q.Y., Liu H.Z., Yang X.P. & Nakajima T. (2005) Molecular and morphological data suggest that Spinibarbus caldwelli (Nichols) (Teleostei : Cyprinidae) is a valid species. Ichthyological Research, 52, 77-82. Tonini F., Divino F., Lasinio G.J., Hochmair H.H. & Scheffrahn R.H. (2014) Predicting the Geographical Distribution of Two Invasive Termite Species From Occurrence Data. Environmental Entomology, 43, 1135-1144. Trujillo-Jimenez P., Lopez-Lopez E., Diaz-Pardo E. & Camargo J.A. (2010) Patterns in the distribution of fish assemblages in Rio Amacuzac, Mexico: influence of abiotic factors and biotic factors. Reviews in Fish Biology and Fisheries, 20, 457-469. Turner S.J., Thrush S., Hewitt J., Cummings V. & Funnell G. (1999) Fishing impacts and the degradation or loss of habitat structure. Fisheries Management and Ecology, 6, 401-420. Tzeng C.S. (1986) Distribution of the freshwater fishes of Taiwan. Q. J. TAIWAN MUS., 39, 128-146. Tzeng C.S. & Feng F.L. (2006) Investigation of Current Status in Toucian River System (2/2). (Ed W.R.A. The 2nd River Management Office). The 2nd River Management Office, Water Resources Agency. Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R. & Cushing C.E. (1980) River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137. Ver Hoef J.M., Peterson E. & Theobald D. (2006) Spatial statistical models that use flow and stream distance. Environmental and Ecological Statistics, 13, 449-464. Wand M.P. & Jones M.C. (1994) Bandwidth selection. In: Kernel smoothing pp. 63-64. Monographs on statistics and applied probability 60. Crc Press. Webster R. & Oliver M.A. (2007) Geostatistics for environmental scientists, John Wiley & Sons. Yamazaki Y., Haramoto S. & Fukasawa T. (2006) Habitat uses of freshwater fishes on the scale of reach system provided in small streams. Environmental Biology of Fishes, 75, 333-341. Yang S.D., Lin T.S., Liou C.H. & Peng H.K. (2003) Influence of dietary protein levels on growth performance, carcass composition and liver lipid classes of juvenile Spinibarbus hollandi (Oshima). Aquaculture Research, 34, 661-666. Yeh M.F. (2005) Investigation techniques of freshwater fish habitat suitability. Agricultural Policy and custom, 155, 79-82. Yu H.L., Chiang C.T., Lin S.D. & Chang T.K. (2010) Spatiotemporal Analysis and Mapping of Oral Cancer Risk in Changhua County (Taiwan): An Application of Generalized Bayesian Maximum Entropy Method. Annals of Epidemiology, 20, 99-107. Yu H.L., Christakos G. & Chen J.C. (2007) Spatiotemporal air pollution modeling and prediction in epidemiologic research. Air Pollution Research Trends, Bodine CG (ed.). Nova Science Publishers, Inc.: Hauppauge, NY, 57-75. Yu H.L., Yang C.H. & Chien L.C. (2013) Spatial vulnerability under extreme events: A case of Asian dust storm's effects on children's respiratory health. Environment International, 54, 35-44. Yu H.L.K., S. C. (2014) STARBME-A GIS tool for space-time analysis and mapping by Bayesian Maximum Entropy method. Zambrano L. & Hinojosa D. (1999) Direct and indirect effects of carp (Cyprinus carpio L.) on macrophyte and benthic communities in experimental shallow ponds in central Mexico. Hydrobiologia, 408, 131-138. Zambrano L., Scheffer M. & Martinez-Ramos M. (2001) Catastrophic response of lakes to benthivorous fish introduction. Oikos, 94, 344-350. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48869 | - |
| dc.description.abstract | 河川棲地環境與魚類豐度的研究,往往受限於採樣工作的困難與相關費用高昂,難以提高資料的時空間解析度,近年來地理統計方法(geostatistical methods)的盛行,藉由已知樣點資料推估未知時空間點位的值,適合做為彌補生態領域現地採樣資料不足問題的模式工具。傳統地理統計方法大都建立在資料常態分佈與線性推估等既有假設之下,並且無法分析不確定性資料(soft data)與應用在河川網路系統。貝氏最大熵法(Bayesian Maximum Entropy method)以貝式條件機率的概念結合物理知識與不確定性資料逐步增強推估資訊,被廣泛應用於許多研究領域之非定常(non-stationary)、非同質(non-homogeneous)時空過程推估,是新興的地理統計方法。本研究利用移動平均法(moving-average construction)建立符合地理統計假設的共變異數模式,再應用貝氏最大熵法推估頭前溪環境因子之時空間分布。
何氏棘魞(Spinibarbus hollandi)為台灣特有種的淡水魚類,主要分布於台灣南部與東部河川,為當地之原生魚種;近年來因為人為放養,何氏棘魞開始出現在台灣西部河川流域,對當地河川生態造成影響,所受衝擊尤以新竹頭前溪為甚。本研究根據前人文獻,選用流速、水深等棲地參數作為分析頭前溪何氏棘魞豐度與河川環境關係的指標非生物因子,利用結構加成性迴歸模式(structured additive regression model)建立頭前溪何氏棘魞與環境因子之關係模式,期能以此作為管理河川外來魚種入侵與河川棲地生態保育暨復育的參考。 研究結果顯示,傳統共變異數模式經過移動平均法修正後,可以應用於河川網路系統並產生符合地理統計假設的共變異數矩陣,應用貝氏最大熵法推估的頭前溪環境參數結果偶有較大誤差,原因為特定測站特性與其附近提供之資訊較少所致;在頭前溪的竹林大橋,何氏棘魞較喜好水深適中,低流速的潭區作為棲息地,該結果可提供作為該物種人為移除與原生棲地保育的參考;結構加成性迴歸模式之交叉驗證結果,平均相對誤差最小約30%,最高則達400%,造成誤差之可能原因除了現地採樣誤差之外,提供訓練及驗證模式之資料偏少也是可能因素,此外,未考慮頭前溪周圍土地利用或其他人為因素亦是導致誤差偏大之另一可能原因。本研究發展之頭前溪何氏棘魞豐度與環境關係可作為淡水魚類豐度推估相關研究之初步嘗試與前驅,未來若相關模式之發展轉趨穩定與成熟,配合貝氏最大熵法河川推估模式,勢必能夠藉由預測與評估魚類物種在河川中的時空分布,協助補足採樣上的困難,並對往後外來魚種管理、河川生物多樣性管理與棲地暨物種復育計畫有所貢獻。 | zh_TW |
| dc.description.abstract | Stream network consists of abundant abiotic and biotic resources and there have been plenty of researches about stream systems. Nevertheless, almost all these researches of freshwater fish community structure and habitat environment have been constrained by considerable costs and hard-work sampling. Recently, many geostatistical methods have been developed and used to estimate data at unsampled sites, and thus the spatial resolution of interested data could be effectively enhanced. Geostatistics could not replace ecological studies, but serves as tool for data modelling. Traditional geostatistical methods are developed based on strict hypothesis of normal distribution and linear estimation, and that only hard data could be used and analyzed, besides, they could not be applied to estimation in stream networks. Bayesian Maximum Entropy (BME) method is a newly developed statistical method with hypothesis which is more flexible, not restrained by normal distribution and linear estimation theories; moreover, BME combines the concept of Bayesian conditional probability, physical knowledge and other soft data to gradually strengthen the information of estimation. In this study, we applied moving-average construction to integrate traditional covariance models which were in keep with geostatistical assumptions, and used BME method to estimate spatiotemporal distribution of stream habitat factors in Toucian River.
Spinibarbus hollandi is a Taiwan endemic freshwater species mainly inhabitates in southern and eastern Taiwan river basins. In recent decade, S. hollandi was spread to western Taiwan streams due to anthropogenic releasing, and local stream habitat has been interfered, especially Toucian River in Hsinchu. In this study, we chose flow speed and water depth as our abiotic indicator, and applied structured additive regression (STAR) model to analyze relationships between those selected abiotic factors and invasive fish species, which was S. hollandi, in Toucian River; we hoped results of the model could serve as reference for stream manage programs including eliminating invasive species and habitat conservation. The results showed that covariance matrix for stream network could be provided using moving-average construction. In results of habitat factor estimation, there were seldom high relative errors using because of particular characteristics of certain stations and lack of information provided from the neighborhoods. Furthermore, the results indicated that pools with moderate depth and low flow speed in Toucian River were preferred by S. hollandi, and it was a little different between researches of the relation between S. hollandi and stream habitats in its native stream systems. Mean relative errors of STAR model ranged from 30% to 400%, and except potential in-site sampling error and sparsity of training data, the high mean relative errors would be caused by exclusion of human activity data in the process of model building. The relation between S. hollandi and habitat modelled in this study could be considered as a preliminary study and an outset of freshwater fish abundance modeling, and as collocating stream BME model, future studies would develop fish abundance estimation model with more robustness and precision. In the future, freshwater fish abundance estimation model would reduce sampling and monitoring costs through providing more spatiotemporal estimation results as reference data, and could be promoted to other stream networks. With the ability to estimate spatiotemporal distribution of fish species and environmental data, people may construct more proper conservation and restoration plans in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:10:36Z (GMT). No. of bitstreams: 1 ntu-105-R01622040-1.pdf: 3416752 bytes, checksum: 897a03c134616d303d862cec2bae4ea9 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 摘要 ……………………………………………………………………... iii
Abstract …………………………………………………………………… v Contents ……………………………………………………… …………viii List of figures …..………………………………………….. ………...xi List of tables ………………………………………………. ………..xiv 1. Introduction 1 1.1. Background 1 1.2. Research purpose 4 2. Literature review 6 2.1. Bayesian Maximum Entropy method 6 2.2. Stream environment and variations of fish community structures 9 2.3. Characteristics of Spinibarbus hollandi 12 2.4. Structured additive regression model 16 3. Description of theories 19 3.1. Theories of spatiotemporal predictions 19 3.2. Bayesian maximum entropy method in STAR-BME 20 3.2.1. Kernel smoothing method 20 3.2.2. Nested spatiotemporal covariance models 22 3.2.3. Bayesian maximum entropy method 23 3.3. Modifications of covariance models 25 3.3.1. Modification reasons 25 3.3.2. Applying moving-average construction to develop covariance models valid for stream networks 27 3.4. The electrode-frame method 33 3.5. Structured additive regression model 36 4. Materials and methods 37 4.1. Study sites – Toucian River 37 4.1.1. ChunHui Bridge 38 4.1.2. Chuli Bridge 39 4.1.3. Longen Diversion Weir 39 4.2. Development of stream BME model 40 4.2.1. Water temperature data for stream BME model 40 4.2.2. Calculation of stream distance 43 4.2.3. Calculation of watershed area 45 4.3. Stream habitat survey and freshwater fish sampling 47 4.4. Statistical analyses 50 4.5. Research framework 50 5. Results and discussion 52 5.1. Mapping results of stream BME model 52 5.2. Relationship between S. hollandi and stream habitats 62 6. Conclusion 75 References 77 | |
| dc.language.iso | en | |
| dc.subject | 移動平均法 | zh_TW |
| dc.subject | 何氏棘? | zh_TW |
| dc.subject | 淡水魚類豐度與棲地關係 | zh_TW |
| dc.subject | 貝氏最大熵法 | zh_TW |
| dc.subject | 結構加成性迴歸模式 | zh_TW |
| dc.subject | moving average construction | en |
| dc.subject | Spinibarbus hollandi | en |
| dc.subject | freshwater fish abundance-stream habitat relationship | en |
| dc.subject | Bayesian Maximum Entropy method | en |
| dc.subject | structured additive regression model | en |
| dc.title | 河川網路時空推估架構之發展並應用於頭前溪魚類與水質分布特性之探討 | zh_TW |
| dc.title | Development of spatiotemporal estimation framework in stream network: an application in analyzing freshwater fish characteristics and water quality distribution in Toucian River | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 任秀慧(Rita S.W. Yam) | |
| dc.contributor.oralexamcommittee | 林遠見(Yuan-Chien Lin) | |
| dc.subject.keyword | 何氏棘?,淡水魚類豐度與棲地關係,貝氏最大熵法,結構加成性迴歸模式,移動平均法, | zh_TW |
| dc.subject.keyword | Spinibarbus hollandi,freshwater fish abundance-stream habitat relationship,Bayesian Maximum Entropy method,structured additive regression model,moving average construction, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU201603258 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
