請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48860
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江茂雄(Mao-Hsiung Chiang) | |
dc.contributor.author | Ching-Sung Wang | en |
dc.contributor.author | 王敬淞 | zh_TW |
dc.date.accessioned | 2021-06-15T11:10:26Z | - |
dc.date.available | 2022-02-08 | |
dc.date.copyright | 2017-02-08 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-09-12 | |
dc.identifier.citation | [1] R.H. Miller, 'The aerodynamics and dynamic analysis of horizontal axis wind turbines,' J Wind Eng Ind Aerodyn, vol. 15:329–40, 1983.
[2] D. J. Malcolm, 'Modal Response of 3-Bladed Wind Turbines,' Journal of Solar Energy Engineering, vol. 124, pp. 372-377, 2002. [3] J. Johansen, H. A. Madsen, M. Gaunaa, C. Bak, and N. N. S?rensen, 'Design of a wind turbine rotor for maximum aerodynamic efficiency,' Wind Energy, vol. 12, pp. 261-273, 2009. [4] Y. Vidal, L. Acho, N. Luo, M. Zapateiro, and F. Pozo, 'Power Control Design for Variable-Speed Wind Turbines,' Energies, vol. 5, p. 3033, 2012. [5] X.-M. Guo, D. Sun, B.-T. He, and L.-L. Huang, 'Direct power control for wind-turbine driven doubly-fed induction generator with constant switch frequency,' in Electrical Machines and Systems, 2007. ICEMS. International Conference, pp. 253-258, 2007. [6] A. Tanvir, A. Merabet, and R. Beguenane, 'Real-Time Control of Active and Reactive Power for Doubly Fed Induction Generator (DFIG)-Based Wind Energy Conversion System,' Energies, vol. 8, p. 10389, 2015. [7] F. Deng and Z. Chen, 'Low-voltage ride-through of variable speed wind turbines with permanent magnet synchronous generator,' in Industrial Electronics, 2009. IECON '09. 35th Annual Conference of IEEE, pp. 621-626, 2009. [8] B. Kim, W. Kim, S. Bae, J. Park, and M. Kim, 'Aerodynamic design and performance analysis of multi-MW class wind turbine blade,' Journal of Mechanical Science and Technology, vol. 25, pp. 1995-2002, 2011. [9] E. Koutroulis and K. Kalaitzakis, 'Design of a maximum power tracking system for wind-energy-conversion applications,' IEEE Transactions on Industrial Electronics, vol. 53, pp. 486-494, 2006. [10] M. Huynh Quang, N. Frederic, N. Essounbouli, and H. Abdelaziz, 'A new MPPT method for stand-alone wind energy conversion system,' in Environment Friendly Energies and Applications (EFEA), 2012 2nd International Symposium on, pp. 335-340, 2012. [11] D. Q. Dang, S. Wu, Y. Wang, and W. Cai, 'Model Predictive Control for maximum power capture of variable speed wind turbines,' in IPEC, 2010 Conference Proceedings, pp. 274-279, 2010. [12] P. Adinda Ihsani, A. Minho, and C. Jaeho, 'Speed sensorless fuzzy MPPT control of grid-connected PMSG for wind power generation,' in Renewable Energy Research and Applications (ICRERA), 2012 International Conference on, pp. 1-6, 2012. [13] M. F. Tsai, C. S. Tseng, and Y. H. Hung, 'A novel MPPT control design for wind-turbine generation systems using neural network compensator,' in IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, pp. 3521-3526, 2012. [14] Y. Ueda and M. Shibata, 'Development of Next Generation 2MW Class Large Wind Turbines,' Mitsubishi Heavy Industries, Ltd.2004. [15] E. Muljadi and C. P. Butterfield, 'Pitch-controlled variable-speed wind turbine generation,' in Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE, pp. 323-330 vol.1, 1999. [16] K. Qi, 'Research on variable pitch wind turbine control system,' in 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 1-4, 2014. [17] Q. Minhui, C. Ning, Z. Liang, Z. Dawei, and Z. Lingzhi, 'A new pitch control strategy for variable-speed wind generator,' in IEEE PES Innovative Smart Grid Technologies, pp. 1-7, 2012. [18] J. S. Kim, J. Jeon, and H. Heo, 'Design of adaptive PID for pitch control of large wind turbine generator,' in Environment and Electrical Engineering (EEEIC), 2011 10th International Conference, pp. 1-4, 2011. [19] M. L. Lima, J. L. Silvino, and P. d. Resende, 'H control for a variable-speed adjustable-pitch wind energy conversion system,' in Industrial Electronics, 1999. ISIE '99. Proceedings of the IEEE International Symposium, pp. 556-561 vol.2, 1999. [20] L. Qingsong and Q. Suxiang, 'Sliding mode variable pitch control of wind turbine via fuzzy neural network,' in Control Conference (CCC), 2012 31st Chinese, pp. 3187-3191, 2012. [21] J. B. Freeman and M. J. Balas, 'An Investigation of Variable Speed Horizontal-Axis Wind Turbines Using Direct Model-Reference Adaptive Control,' presented at the 18th ASME Wind Energy Symposium, Reno, NV, 1999. [22] R. Jones and G. A. Smith, 'High quality mains power from variable-speed wind turbines,' in Renewable Energy - Clean Power 2001, 1993., International Conference on, pp. 202-206, 1993. [23] M. Idan and D. Lior, 'Continuously variable speed wind turbine: transmission concept and robust control,' presented at the Wind Eng, 2000. [24] Y.D. Song, B. Dhinakaran, and X. Y. Bao, 'Variable speed control of wind turbines using nonlinear and adaptive algorithms,' Journal of Wind Engineering and Industrial Aerodynamics, pp. 293-308, 2000. [25] B. Boukhezzar and H. Siguerdidjane, 'Nonlinear Control of Variable Speed Wind Turbines without wind speed measurement,' in Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. 44th IEEE Conference on, pp. 3456-3461, 2005. [26] H. Camblong, G. Tapia, and M. Rodriguez, 'Robust digital control of a wind turbine for rated-speed and variable-power operation regime,' Control Theory and Applications, IEE Proceedings -, vol. 153, pp. 81-91, 2006. [27] B. Boukhezzar, L. Lupu, H. Siguerdidjane, and M. Hand, 'Multivariable control strategy for variable speed, variable pitch wind turbines,' Renewable Energy, vol. 32, pp. 1273-1287, 7// 2007. [28] Z. Jianzhong, C. Ming, and C. Zhe, 'Design of wind turbine controller by using wind turbine codes,' in Electrical Machines and Systems, 2008. ICEMS 2008. International Conference on, pp. 2591-2595, 2008. [29] R. Fadaeinedjad, G. Moschopoulos, and M. Moallem, 'Simulation of a Wind Turbine with Doubly-Fed Induction Machine Using FAST and Simulink,' in Industrial Electronics, 2006 IEEE International Symposium on, pp. 2648-2653, 2006. [30] R.K.Lu and C.R.Chang, 'Load Computation of a 150kWWind Turbine by IEC-61400-1via FAST/SIMULINK,' presented at the Taiwan Wind Energy Conference, Taiwan, 2009. [31] G. Mandic and A. Nasiri, 'Modeling and simulation of a wind turbine system with ultracapacitors for short-term power smoothing,' in Industrial Electronics (ISIE), 2010 IEEE International Symposium on, 2010, pp. 2431-2436. [32] A. Anis, 'Simulation of Slider Crank Mechanism Using ADAMS Software,' International Journal of Engineering & Technology, vol. 12, pp. 108-112, 2012. [33] Z. Jingjun, Z. Jitao, G. Ruizhen, and H. Lili, 'The application of co-simulation technology of ANSYS and MSC.ADAMS in structural engineering,' in Mechanic Automation and Control Engineering (MACE), 2010 International Conference on, pp. 1033-1036, 2010. [34] L. Taotao, Z. Zhengyan, Z. Jinghua, C. Dingfang, and H. Jiquan, 'Dynamics researches of Megawatt Wind Turbine Gear Increaser based on Adams,' in Pervasive Computing and Applications (ICPCA), 2011 6th International Conference on, pp. 535-539, 2011. [35] B. T. F. Wang, and K. A. Stelson, 'Mid-sized wind turbine with hydro-mechanical transmission demonstrates improved energy production,' presented at the The 8th International Conference on Fluid Power Transmission and Control, Hangzhou, China, 2013. [36] F. W. a. K. A. Stelson, 'Model predictive control for a mid-sized hydrostatic wind turbine,' presented at the the 13th Scandinavian International Conference on Fluid Power, Linköping, Sweden, 2013. [37] B. Thul, R. Dutta and K. A. Stelson, 'Hydrostatic transmission for mid size wind turbines,' presented at the Proceedings of the 52nd National Conference of Fluid Power, Las Vegas, 2011. [38] F. Wang, B. Trietch, and K. A. Stelson, 'Mid-sized wind turbine with hydro-mechanical transmission demonstrates improved energy production,' presented at the The 8th International Conference on Fluid Power Transmission and Control, Hangzhou, China, 2013. [39] S. Helduser, 'Electric-hydrostatic drive—an innovative energy-saving power and motion control system,' Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 213, pp. 427-437, August 1, 1999. [40] S. Habibi and A. Goldenberg, 'Design of a new high-performance electrohydraulic actuator,' IEEE/ASME Transactions on Mechatronics, vol. 5, pp. 158-164, 2000. [41] M.-H. Chiang, 'A novel pitch control system for a wind turbine driven by a variable-speed pump-controlled hydraulic servo system,' Mechatronics, vol. 21, pp. 753-761, 6// 2011. [42] A. J. Krener, 'On the Equivalence of Control Systems and the Linearization of Nonlinear Systems,' SIAM Journal on Control, vol. 11, pp. 670-676, 1973. [43] R. W. Brockett, 'Feedback invariants for nonlinear systems,' presented at the International Congress of Mathematicans, 1978. [44] B. Jakubczyk, 'On Linearization of Control Systems,' Bull. Acad. Polonaise Sci. Ser. Sci. Math., vol. 28, pp. 517-522, 1980. [45] J. h. Kwon, T. h. Kim, J. s. Jang, and I. y. Lee, 'Feedback Linearization Control of a Hydraulic Servo System,' in 2006 SICE-ICASE International Joint Conference, pp. 455-460, 2006. [46] M. Boerlage, M. Steinbuch, P. Lambrechts, and M. v. d. Wal, 'Model-based feedforward for motion systems,' in Control Applications, 2003. CCA 2003. Proceedings of 2003 IEEE Conference, pp. 1158-1163 vol.2, 2003. [47] S. Devasia, 'Robust inversion-based feedforward controllers for output tracking under plant uncertainty,' in American Control Conference, 2000. Proceedings of the 2000, pp. 497-502 vol.1, 2000. [48] D. E. Torfs, R. Vuerinckx, J. Swevers, and J. Schoukens, 'Comparison of two feedforward design methods aiming at accurate trajectory tracking of the end point of a flexible robot arm,' IEEE Transactions on Control Systems Technology, vol. 6, pp. 2-14, 1998. [49] Jason M. Jonkman and M. L. B. Jr., 'FAST User's Guide,' National Renewable Energy Laboratory (NREL), 2005. [50] C. Bak, H. Aagaard Madsen, and J. Johansen, 'Influence from blade-tower interaction on fatigue loads and dynamics (poster),' in Wind energy for the new millennium. Proceedings, ed: WIP Renewable Energies, 2001, pp. 394-397. [51] C. A. M. Bak, H.; Johansen, J, 'Influence from blade-tower interaction on fatigue loads and dynamics (poster),' in Wind energy for the new millennium, Copenhagen, 2001. [52] J. M. Jonkman and M. L. B. Jr., 'FAST User’s Guide ', National Renewable Energy Laboratory, 2005. [53] Harakosan, 'Sturcture of Pitch System,' in Technical description of the Z72 wind turbine, ed. [54] M. N. Uddin, T. S. Radwan, and M. Azizur Rahman, 'Performances of fuzzy-logic-based indirect vector control for induction motor drive,' Industry Applications, IEEE Transactions on, vol. 38, pp. 1219-1225, 2002. [55] K. S. Gaeid, P. Hew Wooi, and H. A. F. Mohamed, 'Indirect vector control of a variable frequency induction motor drive (VCIMD),' in Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), 2009 International Conference on, pp. 36-40, 2009. [56] A. Rolan, A. Luna, G. Vazquez, D. Aguilar, and G. Azevedo, 'Modeling of a variable speed wind turbine with a Permanent Magnet Synchronous Generator,' in Industrial Electronics, 2009. ISIE 2009. IEEE International Symposium on, pp. 734-739, 2009. [57] C. Busca, A. I. Stan, T. Stanciu, and D. I. Stroe, 'Control of Permanent Magnet Synchronous Generator for large wind turbines,' in Industrial Electronics (ISIE), 2010 IEEE International Symposium on, pp. 3871-3876, 2010. [58] M. Y. Uctug, I. Eskandarzadeh, and H. Ince, 'Modelling and output power optimisation of a wind turbine driven double output induction generator,' IEE Proceedings - Electric Power Applications, vol. 141, pp. 33-38, 1994. [59] S. Skogestad and I. Postlethwaite, 'Multivariable feedback control: analysis and design,' New York, 1996. [60] G. Stein and M. Athans, 'The LQG/LTR procedure for multivariable feedback control design,' Automatic Control, IEEE Transactions on, vol. 32, pp. 105-114, 1987. [61] S. M. B. Wilmshurst, Ed., Control strategies for wind turbines ,Wind Eng, 1988. [62] A. Merabet, J. Thongam, and J. Gu, 'Torque and pitch angle control for variable speed wind turbines in all operating regimes,' in Environment and Electrical Engineering (EEEIC), 2011 10th International Conference on, pp. 1-5, 2011. [63] K. E. Johnson, L. J. Fingersh, M. J. Balas, and L. Y. Pao, 'Methods for Increasing Region 2 Power Capture on a Variable-Speed Wind Turbine,' Journal of Solar Energy Engineering, vol. 126, pp. 1092-1100, 2004. [64] S. T. Wei-Hua Hu, Samir Said, Werner Rücker4, 'Resonance phenomenon in a wind turbine system under operational conditions,' in 9th International Conference on Structural Dynamics, Porto, Portugal, 2014 [65] 'International Standard 61400-3,' International Electrotechnical Commision ISBN 2-8318-1025-2, Feb 2009. [66] 'International Standard 61400-1,' International Electrotechnical CommisionAug 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48860 | - |
dc.description.abstract | 本文旨在建立風力發電機整合模擬系統,藉由導入風力發電機模擬軟體FAST、多體動力學模擬軟體ADAMS及數值模擬軟體MATLAB/SIMULINK,此模擬系統可以達成全方位及高自由度的建模與動態模擬。FAST負責風力發電機的機組建模和空氣動力計算,ADAMS負責多體動力學的動態模擬,而MATLAB/SIMULINK則負責子系統的建模與控制器的設計。此整合模擬系統依現有大型風力發電機為基礎,建立仿真且高近似度的模型,並參考實際的子系統,包含直流馬達驅動的旋角系統、感應馬達驅動的偏航系統和直驅式的永磁同步發電機。全系統並經與實測資料的交叉比對,其葉片與塔架更經由模態分析來進一步驗證此模型的有效性,並建立起一套完整的控制策略。同時,本論文更提出另一套創新的風力發電機子系統,包含泵控液壓旋角控制系統、液靜壓傳動系統以及雙饋式感應發電機,以達到無段變速的功能。
同時,為了證明此創新想法的可行性,本研究亦根據實際風力發電機葉片規格建立出一個等效的實驗機組,利用交流伺服馬達驅動定排量泵驅動泵控液壓旋角系統。並根據此系統建立非線性控制器來實現軌跡追蹤與強健性控制。此外,利用硬體迴路的概念模擬出風機葉片根部在運轉模擬中會承受的力矩並回授到實驗系統以測試系統的抗干擾能力。硬體迴路的實驗結果證明了此系統的有效性,並且提出了新的干擾力矩模型。其中泵控液壓旋角控制系統結合控制器的設計更經由實驗來驗證與實現,實驗的結果顯示在軌跡追蹤與抗干擾分析皆證明此創新想法的可行性。未來將針對離岸風力發電機建立起相關機組的建模以幫助國內新興綠色能源計畫的推動與發展。 | zh_TW |
dc.description.abstract | A novel dynamic closed-loop co-simulation methodology of overall wind turbine systems is presented in this thesis. This methodology consists of aerodynamics, mechanism dynamics, control system dynamics, and subsystem dynamics. Aerodynamic and turbine properties were modelled in FAST; ADAMS performed the mechanism dynamics; control system dynamics and subsystem dynamics such as generator, pitch control system and yaw control system were modeled and built in MATLAB/SIMULINK. Thus, this comprehensive integration of methodology expanded both the flexibility and controllability of wind turbine.. Besides, the dynamic simulation results were compared with the measuring results of SCADA (Supervisory Control and Data Acquisition) of a 2MW wind turbine for ensuring the novel dynamic co-simulation methodology. Besides, a novel hydrostatic speed control system with hydraulic pump-controlled pitch system and hydrostatic transmission system was also proposed in this study.
To realize the hydrostatic speed-controlled wind turbine, a full-scale test rig of the hydraulic pitch control system of a 2MW wind turbine was developed for practically experimental verification. The pitch controller designed by two degree-of-freedom (2-DOF) motion controller with feedback linearization was developed to enhance the controllability and stability of the pitch control system. The wind turbine simulation software FAST was used to analyze the motion of the blade which results were given to the test rig as the disturbance load command. The robust 2-DOF pitch controller developed in this thesis contained a feedforward controller with feedback linearization theory to overcome the nonlinearities of the system and a feedback controller to improve the system robustness for achieving the disturbance rejection. Consequently, this thesis not only developed the wind turbine co-simulation methodology with high flexibility but also proposed and realized the novel robust hydraulic pitch control system by performing the excellent tracking performance of 5th order polynomial and sinusoidal path trajectory control in the experiments. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:10:26Z (GMT). No. of bitstreams: 1 ntu-105-F99525024-1.pdf: 4123522 bytes, checksum: 6d769ae8930119a9716c597e73724edb (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 iii Abstracts iv Contents vi List of Figures ix List of Tables xix Nomenclature xx Abbreviation xxvi Chapter 1 Introduction 1 1.1 Literature Survey 1 1.1.1 History of Wind Turbine 1 1.1.2 Modeling Large Wind Turbine 3 1.1.3 Control Strategy of Wind Turbine 4 1.1.4 Control Theory 6 1.2 Motivation of the Thesis 6 1.3 Organization of the Thesis 12 Chapter 2 Simulation Model of Large Wind Turbine 13 2.1 Simulation Software Setup 14 2.2 Subsystem of Large Wind Turbine 19 2.2.1 Modelling of DC servo motor in pitch control system 20 2.2.2 Modelling of AC induction motor in yaw control system 23 2.2.3 Modelling of permanent magnetic synchronous generator system 26 2.3 Subsystem of Hydrostatic Speed Control Wind Turbine 29 2.3.1 Perspective of hydraulic pump-controlled pitch system 34 2.3.2 Modelling of hydrostatic transmission system 34 2.3.3 Modelling of DFIG generator 36 Chapter 3 Experiment of Hydraulic Pitch System 42 3.1 Test rig layout of hydraulic pump controlled pitch system 42 3.2 Mathematic Model of Hydraulic Pump controlled Pitch System 45 3.2.1 The mechanism of the hydraulic pitch control system 47 3.2.2 Modelling of disturbance system 49 3.3 Controller Design of the Pitch System 51 3.3.1 Feedback linearization theory in Hydraulic Pump-controlled system 52 .3.3.1.1 Stability analysis 53 .3.3.1.2 Controller design 54 3.3.2 2-DOF motion controller in Pitch System 56 3.3.3 LTR Observer Design 57 Chapter 4 Control Strategy of Large Wind Turbine 60 4.1 Control regions and MPPT controller design 60 4.2 Control Law of Hydrostatic Speed Control 64 Chapter 5 Simulations 68 5.1 Model Verification of Large Wind Turbine 69 5.1.1 Comparison of wind turbine characteristics 69 5.1.2 Comparison of simulation results with SCADA 72 5.1.3 Mode shape analysis of wind turbine 74 5.2 Closed-loop Simulations of the Subsystems of Large Wind Turbine 77 5.2.1 Description of Wind case 77 5.2.2 Closed-loop response for pitch subsystem 80 5.2.3 Closed-loop response for yaw subsystem 96 5.2.4 Closed-loop response for generator subsystem 99 .5.2.4.1 Closed-loop response for PMSG subsystem 99 .5.2.4.2 Closed-loop response for DFIG subsystem 107 5.3 Closed-loop Simulations of Overall Large Wind Turbine 120 5.3.1 Closed-loop Simulations of Direct-drive Wind Turbine 123 5.3.2 Closed-loop Simulations of Hydrostatic Speed Controlled Wind Turbine 137 5.4 Extreme Design Load Case of Wind Turbine 147 Chapter 6 Experimental Results 152 6.1 Model Verification of Hydraulic Pump-controlled Pitch System 153 6.2 Experiments of Hydraulic Pump-controlled Pitch System 157 6.3 Disturbance Rejection of Hydraulic Pump-controlled Pitch System 166 Chapter 7 Conclusions 171 REFERENCES 173 | |
dc.language.iso | en | |
dc.title | 大型風力發電機整合模擬與創新液壓變旋角控制實驗系統之研究 | zh_TW |
dc.title | Co-Simulation Analysis of a Large Wind Turbine and Experimental Implementation of a Novel Hydraulic Pitch Control System | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳義男(Yih-Nan Chen),施明璋(Ming-Chang Shih),林榮慶(Zone-Ching Lin),林輝政(Huei-Jeng Lin),李雅榮(Ya-Jeng Lee) | |
dc.subject.keyword | 風力發電機,整合模擬,旋角控制,偏航控制,永磁同步發電機,雙饋式感應發電機,泵控液壓系統,液靜壓傳動系統, | zh_TW |
dc.subject.keyword | wind turbine,co-simulation,pitch control,yaw control,permanent magnetic synchronous generator,doubly fed induction generator,pump-controlled hydraulic system,hydrostatic transmission system, | en |
dc.relation.page | 177 | |
dc.identifier.doi | 10.6342/NTU201603592 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-09-13 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 4.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。