請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48811完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭瑞祥(Ruey-Shan Guo) | |
| dc.contributor.author | Hong-Cheng Syu | en |
| dc.contributor.author | 許宏誠 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:09:41Z | - |
| dc.date.available | 2022-02-08 | |
| dc.date.copyright | 2017-02-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-10-19 | |
| dc.identifier.citation | 1.王宜慶「 資料探勘於交通事故之應用-以大客車為例」,國立臺灣大學土木工程研究所-交通組,2009。
2.吳易真 ,「基隆市交通肇事分析及安全改善之研究」, 國立交通大學交通運輸研究所碩士論文,2004。 3.李訓誠,「應用資料探勘方法於自行車交通事故特性之研究」,中央警察大學交通管理研究所碩士論文,2010。 4.周雍傑,「以類神經網路探討都市地區肇事嚴重程度之研究」,國立成功大學交通管理學系碩士論文,2000。 5.林聲宇,「應用決策樹與濾嘴法則於股票投資」,國立交通大學工業工程研究所碩士論文,2004。 6.黃志偉,「高速公路肇事處理時間預測之研究-應用類神經網路分析」,國立中央大學土木工程研究所碩士論文,2002。 7.黃湄清,「利用資料探勘技術於台灣地區肇事危險判別之研究」,國立中央大學土木工程研究所碩士論文,2005。 8.簡禎富,許嘉裕,「資料挖礦與大數據分析」,前程文化, 2014。 9.Andreas Gregoriades, and Kyriacos C. Mouskos. 'Black spots identification through a Bayesian Networks quantification of accident risk index.' Transportation Research part C: emerging technologies 28 (2013): 28-43. 10.Berry, Michael J., and Gordon Linoff. Data mining techniques: for marketing, sales, and customer support. John Wiley & Sons, Inc., 1997. 11.Castillo-Manzano, Jose I., Mercedes Castro-Nuno, and Xavier Fageda. 'Exploring the relationship between truck load capacity and traffic accidents in the European Union.' Transportation research part E: logistics and transportation review 88 (2016): 94-109. 12.Chang, Li-Yen, and Wen-Chieh Chen. 'Data mining of tree-based models to analyze freeway accident frequency.' Journal of Safety Research 36.4 (2005): 365-375. 13.Chong, Miao M., Ajith Abraham, and Marcin Paprzycki. 'Traffic accident analysis using decision trees and neural networks.' arXiv preprint cs/0405050 (2004). 14.Eduardo F.M., M.H. Dulce, F.R. Andres, “Mining Road Accidents”, MICAI LNAI 2313, (2002):516-525. 15.Frawley, William J., Gregory Piatetsky-Shapiro, and Christopher J. Matheus. 'Knowledge discovery in databases: An overview.' AI magazine 13.3 (1992): 57. 16.Han, Jiawei, and Micheline Kamber. 'Data Mining: Concepts and Techniques, chapter Mining association rules in large databases.' (2001). 17.Holland, John H. 'Adaptation in natural and artificial systems. An introductory analysis with application to biology, control, and artificial intelligence.' Ann Arbor, MI: University of Michigan Press (1975). 18.Jung, Soyoung, Xiao Qin, and Cheol Oh. 'Improving strategic policies for pedestrian safety enhancement using classification tree modeling.' Transportation Research Part A: Policy and Practice 85 (2016): 53-64. 19.Khan, Ghazan, Andrea R. Bill, and David A. Noyce. 'Exploring the feasibility of classification trees versus ordinal discrete choice models for analyzing crash severity.' Transportation Research Part C: Emerging Technologies 50 (2015): 86-96. 20.Kuhnert, Petra M., Kim-Anh Do, and Rod McClure. 'Combining non-parametric models with logistic regression: an application to motor vehicle injury data.'Computational Statistics & Data Analysis 34.3 (2000): 371-386. 21.Li, Ruimin, et al. 'Incident duration model on urban freeways using three different algorithms of decision tree.' Intelligent Computation Technology and Automation (ICICTA), 2010 International Conference on. Vol. 2. IEEE, 2010. 22.Rocio de Ona, and Juan de Ona. 'Analysis of transit quality of service through segmentation and classification tree techniques.' Transportmetrica A: Transport Science 11.5 (2015): 365-387. 23.內政部警政署https://www.npa.gov.tw/NPAGip/wSite/lp?ctNode=12744&CtUnit=2543&BaseDSD=7 24.台北市政府資料開放平台http://data.taipei | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48811 | - |
| dc.description.abstract | 隨著經濟的發展交通運輸工具越來越普及與便利造成每年的交通事故件數不斷的攀升,以台北市為例每年發生至少13000起交通事故。機車事故是主要發生車禍的車種。交通事故的發生是不同時間、環境等因素所構成,因此每個發生交通事故嚴重性皆有所不同,難以去分析。為確實掌握交通事故發生原因及肇事防治工作,本研究取得交通肇事資料進行分析,以降低肇事案件發生,維護駕駛及路人安全。道路交通事故調查表登載內容包括環境因子、交通設施及當事人資料等35項,經過其資料前置處理包含資料過濾、值域正確性判斷、遺漏值插補處理,建立本研究肇事分析資料庫後運用決策樹對其做資料探勘。
本研究採用台北市交通局民國97年至102年共六年的台北市機車交通事故資料從機車乘車者的受傷程度做駕駛行為、道路環境條件等因果關係並運用資料探勘技術中的決策樹CHAID演算法來驗證肇事分析期望找出台北市交通事故的主要問題。歸納出北市交通事故相關因子提供對北市具體改善策略與建議並降低未來事故發生率。 | zh_TW |
| dc.description.abstract | With the development of the economy and improvement of people’s living, Transportation has become more popularity and convenient. In recent years, the traffic accident rate has increased sharply. In Taipei, there are more than 13,000 traffic accidents every year, with the motor vehicle accident being one of the highest traffic proportion among all the car types.
There are different factors of traffic accidents, including time, environment, weather…etc. Each traffic accident may cause different injure level. According to the traffic data from the Department of Transportation in Taipei City, there are 35 categories from traffic record including environmental factors, transport facilities and personal information. And it’s hard to analysize all the factors simultaneously. To better understand the traffic factors and prevent citizens from traffic accidents. This study will preprocessing the traffic accident data from 2008 to 2013 and use decision tree (CHAID) to analyize the traffic data, figure out the main factors of motor vehicle accidents in Taipei capital, and provide valuable information for the Department of Transportation in Taipei City to support their decision-making, transportation planning, reduce the traffic accidents. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:09:41Z (GMT). No. of bitstreams: 1 ntu-105-R03546049-1.pdf: 7413049 bytes, checksum: 92e42590583e3f212fcb2236f979632b (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書i
誌謝ii 摘要iii Abstractiv 目錄v 圖目錄vi 表目錄viii 第一章 緒論1 1.1研究背景與動機1 1.2研究目的4 1.3論文架構5 第二章 文獻回顧7 2.1資料探勘的定義與技術7 2.1.1資料探勘定義7 2.1.2資料探勘技術9 2.2決策樹12 2.2.1決策樹的基本架構12 2.2.2三種決策樹演算法14 2.3道路肇事文獻20 2.3.1交通事故定義與分類20 2.3.2肇事資料探勘文獻分析25 2.4小結33 第三章 研究方法34 3.1研究範圍34 3.2研究流程35 3.2.1肇事資料收集36 3.2.2重複資訊檢核36 3.2.3值域正確性判斷36 3.2.4缺漏直插補處理36 3.2.5資料庫表單設計40 3.3決策樹CHAID52 第四章 肇事資料探勘與分析53 4.1決策樹準則設定53 4.2決策樹驗證結果57 4.3決策樹結果分析57 第五章 結論與建議64 5.1研究成果64 5.1.1結論64 5.1.2建議65 5.2未來研究方向66 參考文獻67 附錄70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 資料探勘 | zh_TW |
| dc.subject | 摩托車肇事 | zh_TW |
| dc.subject | 決策分析 | zh_TW |
| dc.subject | 肇事分析 | zh_TW |
| dc.subject | 決策樹 | zh_TW |
| dc.subject | Decision Tree | en |
| dc.subject | Accident Analysis | en |
| dc.subject | Motorcycle Accident | en |
| dc.subject | Data Mining | en |
| dc.subject | Decision Analysis | en |
| dc.title | 應用決策樹法於摩托車事故之研究 | zh_TW |
| dc.title | A Study on Applying Decision Tree Technique to Motorcycle Accidents | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蔣明晃(Ming-Huang Chiang) | |
| dc.contributor.oralexamcommittee | 吳政鴻(Cheng-Hung Wu),洪一薰(I-Hsuan Hong) | |
| dc.subject.keyword | 決策分析,決策樹,資料探勘,摩托車肇事,肇事分析, | zh_TW |
| dc.subject.keyword | Decision Analysis,Decision Tree,Data Mining,Motorcycle Accident,Accident Analysis, | en |
| dc.relation.page | 93 | |
| dc.identifier.doi | 10.6342/NTU201603681 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-10-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 7.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
