Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48787
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張嘉升
dc.contributor.authorLi-Ying Chenen
dc.contributor.author陳莉穎zh_TW
dc.date.accessioned2021-06-15T11:09:21Z-
dc.date.available2017-02-08
dc.date.copyright2017-02-08
dc.date.issued2016
dc.date.submitted2016-10-25
dc.identifier.citation[1] M.M.A. Rafique, J. Iqbal, Journal of Encapsulation and Adsorption Sciences 1 (2011) 29.
[2] H. Dai, Accounts of Chemical Research 35 (2002) 1035.
[3] J. Kong, A.M. Cassell, H. Dai, Chemical Physics Letters 292 (1998) 567.
[4] M. Kumar, Y. Ando, Journal of Nanoscience and Nanotechnology 10 (2010) 3739.
[5] Ç. Öncel, Y. Yürüm, Fullerenes, Nanotubes, and Carbon Nonstructures 14 (2006) 17.
[6] M.J. O'Connell, E.E. Eibergen, S.K. Doorn, Nature Materials 4 (2005) 412.
[7] A. Thess, R. Lee, P. Nikolaev, H. Dai, Science 273 (1996) 483.
[8] S. Frank, P. Poncharal, Z. Wang, W.A. de Heer, Science 280 (1998) 1744.
[9] A. Jorio, R. Saito, J. Hafner, C. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. Dresselhaus, Physical Review Letters 86 (2001) 1118.
[10] S. Iijima, Nature 354 (1991) 56.
[11] P.G. Collins, P. Avouris, Scientific American 283 (2000) 62.
[12] A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Nature 424 (2003) 654.
[13] W. Hoenlein, F. Kreupl, G. Duesberg, A. Graham, M. Liebau, R. Seidel, E. Unger, Materials Science and Engineering: C 23 (2003) 663.
[14] S. Berber, Y.-K. Kwon, D. Tománek, Physical Review Letters 84 (2000) 4613.
[15] S. Sinha, S. Barjami, G. Iannacchione, A. Schwab, G. Muench, Journal of Nanoparticle Research 7 (2005) 651.
[16] P. Harris, International Materials Reviews 49 (2004) 31.
[17] M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339 (2013) 535.
[18] R. Khare, S. Bose, Journal of Minerals and Materials Characterization and Engineering 4 (2005) 31.
[19] A.D. Franklin, M. Luisier, S.-J. Han, G. Tulevski, C.M. Breslin, L. Gignac, M.S. Lundstrom, W. Haensch, Nano Letters 12 (2012) 758.
[20] J. Misewich, R. Martel, P. Avouris, J. Tsang, S. Heinze, J. Tersoff, Science 300 (2003) 783.
[21] J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, Nano letters 7 (2007) 2317.
[22] H.R. Byon, H.C. Choi, Journal of the American Chemical Society 128 (2006) 2188.
[23] V. Sazonova, Y. Yaish, H. Üstünel, D. Roundy, T.A. Arias, P.L. McEuen, Nature 431 (2004) 284.
[24] B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold, Nano Letters 8 (2008) 3735.
[25] P. Avouris, M. Freitag, V. Perebeinos, Nature Photonics 2 (2008) 341.
[26] P. Avouris, Mrs Bulletin 29 (2004) 403.
[27] J.S. Lee, S. Ryu, K. Yoo, I.S. Choi, W.S. Yun, J. Kim, The Journal of Physical Chemistry C 111 (2007) 12504.
[28] A. Di Bartolomeo, M. Rinzan, A.K. Boyd, Y. Yang, L. Guadagno, F. Giubileo, P. Barbara, Nanotechnology 21 (2010) 115204.
[29] S.J. Tans, A.R. Verschueren, C. Dekker, Nature 393 (1998) 49.
[30] A. Bachtold, M. Fuhrer, S. Plyasunov, M. Forero, E.H. Anderson, A. Zettl, P.L. McEuen, Physical Review Letters 84 (2000) 6082.
[31] B. Bourlon, C. Miko, L. Forro, D. Glattli, A. Bachtold, Physical Review Letters 93 (2004) 176806.
[32] A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L. Forró, T. Nussbaumer, C. Schönenberger, Nature 397 (1999) 673.
[33] A.M. Lunde, K. Flensberg, A.-P. Jauho, Physical Review B 71 (2005) 125408.
[34] F. Triozon, S. Roche, A. Rubio, D. Mayou, Physical Review B 69 (2004) 121410.
[35] S. Sanvito, Y.-K. Kwon, D. Tománek, C.J. Lambert, Physical Review Letters 84 (2000) 1974.
[36] A. Hansson, S. Stafström, Physical Review B 67 (2003) 075406.
[37] D.B. Williams, C.B. Carter, The Transmission Electron Microscope, Springer, 1996.
[38] H. Volkmann, Applied Optics 5 (1966) 1720.
[39] J.F. O'Hanlon, A User's Guide to Vacuum Technology, John Wiley & Sons, 2005.
[40] L.B. Loeb, The Kinetic Theory of Gases, Courier Corporation, 2004.
[41] Y.C. Chang, Y.H. Liaw, Y.S. Huang, T. Hsu, C.S. Chang, T.T. Tsong, Small 4 (2008) 2195.
[42] S.-C. Wang, Y.-C. Chang, D.-H. Lien, T. Hsu, C.-S. Chang, Applied Physics Letters 97 (2010) 133105.
[43] Y.S. Chen, Y.C. Chang, S.C. Wang, L.Y. Chen, D.H. Lien, L.J. Chen, C.S. Chang, Small 8 (2012) 2158.
[44] L. Giannuzzi, F.A. Stevie, Micron 30 (1999) 197.
[45] J. Lyklema, Fundamentals of Interface and Colloid Science: Soft Colloids, Academic Press, 2005.
[46] K. Yamamoto, S. Akita, Y. Nakayama, Journal of physics D: Applied Physics 31 (1998) L34.
[47] A.R. Boccaccini, J. Cho, J.A. Roether, B.J. Thomas, E.J. Minay, M.S. Shaffer, Carbon 44 (2006) 3149.
[48] P. Avouris, Chemical Physics 281 (2002) 429.
[49] C. Schoenenberger, A. Bachtold, C. Strunk, J.-P. Salvetat, L. Forro, Applied Physics A 69 (1999) 283.
[50] P.G. Collins, M.S. Arnold, P. Avouris, Science 292 (2001) 706.
[51] J. Guo, S. Datta, M. Lundstrom, Electron Devices, IEEE Transactions on Electron Devices 51 (2004) 172.
[52] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. Chan, J. Tersoff, P. Avouris, Physical Review Letters 87 (2001) 256805.
[53] A. Javey, J. Guo, D.B. Farmer, Q. Wang, E. Yenilmez, R.G. Gordon, M. Lundstrom, H. Dai, Nano Letters 4 (2004) 1319.
[54] M. Radosavljević, S. Heinze, J. Tersoff, P. Avouris, Applied Physics Letters 83 (2003) 2435.
[55] J. Svensson, E.E. Campbell, Journal of Applied Physics 110 (2011) 111101.
[56] C. Chen, L. Liu, Y. Lu, E.S.-W. Kong, Y. Zhang, X. Sheng, H. Ding, Carbon 45 (2007) 436.
[57] A. Stetter, J. Vancea, C. Back, Applied Physics Letters 93 (2008) 172103.
[58] A. Stetter, J. Vancea, C. Back, Physical Review B 82 (2010) 115451.
[59] W. Wang, K. Munakata, M. Rozler, M.R. Beasley, Physical Review Letters 110 (2013) 236802.
[60] P.G. Collins, M. Hersam, M. Arnold, R. Martel, P. Avouris, Physical Review Letters 86 (2001) 3128.
[61] X. Zhou, J.-Y. Park, S. Huang, J. Liu, P.L. McEuen, Physical Review Letters 95 (2005) 146805.
[62] A. Nieuwoudt, Y. Massoud, Electron Devices, IEEE Transactions on Electron Devices 53 (2006) 2460.
[63] J. Fischer, H. Dai, A. Thess, R. Lee, N. Hanjani, D. Dehaas, R. Smalley, Physical Review B 55 (1997) R4921.
[64] C. Kane, E. Mele, R. Lee, J. Fischer, P. Petit, H. Dai, A. Thess, R. Smalley, A. Verschueren, S. Tans, Europhysics Letters 41 (1998) 683.
[65] H. Li, W.-Y. Yin, K. Banerjee, J.-F. Mao, Electron Devices, IEEE Transactions on Electron Devices 55 (2008) 1328.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48787-
dc.description.abstractUnderstanding the electrical properties of an individual carbon nanotube will have an essential impact on its application. In this thesis, the electrical properties of multiwall carbon nanotubes (MWCNTs) have been investigated by ultra-high vacuum (UHV) transmission electron microscope (TEM) equipped with a three-electrode setup. In situ tuning of a multiwall carbon nanotube field-effect transistor (CNFET) was performed. Furthermore, electric current distribution of a MWCNT has been studied.
The three-electrode setup has been fabricated inside a UHV-TEM. The triangular cantilever of an AFM chip is shaped into two electrodes by focused ion beam, and an electrochemically etched gold tip is used as the third electrode. By use of the three-electrode setup inside TEM, the electrical properties of a MWCNT can be investigated with concurrent high-resolution TEM images.
Ultra-clean and hysteresis-free multiwall CNFETs have been fabricated inside the TEM equipped with the movable gold tip as a local gate. The electronic characteristics of a MWCNT can be tuned by tailoring the tube structure as well as varying the applied drain-source voltage (Vds). The Schottky barrier of a multiwall CNFET was found generated within the tube, and the barrier height was estimated.
The current distribution in a side-bonded MWCNT was studied by using the gold tip as a potentiometric probe. The current on the outermost shell of a MWCNT is measured by probing the gold tip along the tube. We have quantitatively derived that the current on the outermost shell depends on the applied current and the shell diameter. The current is mainly on the outer two shells of a side-bonded MWCNT.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:09:21Z (GMT). No. of bitstreams: 1
ntu-105-D98222033-1.pdf: 4058671 bytes, checksum: 915bac98830aeec73b696e88839c2eb3 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 I
中文摘要 III
ABSTRACT IV
CONTENTS V
LIST OF FIGURES VII
1. Introduction 1
1.1 Carbon Nanotube 1
1.1.1 Synthesis of Carbon Nanotubes 1
1.1.2 Structure of Carbon Nanotubes 2
1.1.3 Properties of Carbon Nanotubes 5
1.1.4 Application of Carbon Nanotubes 7
1.2 Carbon Nanotube Field-Effect Transistors (CNFETs) 8
1.3 Current Distribution on a CNT 10
2 Experimental Details 12
2.1 Transmission Electron Microscope 12
2.1.1 The Source of Electron Beam 13
2.1.2 Vacuum System of TEM 14
2.1.3 Nanopositioning System inside TEM 15
2.1.4 UHV Electron Beam Evaporator 17
2.2 Focused Ion Beam (FIB) 18
2.3 Three Electrodes inside TEM 18
2.3.1 Holder 18
2.3.2 Two-Electrode Chip 19
2.3.3 Gold Tip 20
2.4 The Preparation of Gold Knife-Edge with CNTs 22
2.4.1 The Preparation of Gold Knife-Edge 22
2.4.2 Electrophoresis 23
2.5 Depositing a CNT between Two Electrodes of a Chip 27
3 In Situ Tuning the Ambipolar Field Effect on Multiwall Carbon Nanotubes 29
3.1 The Thinning Process of CNT 30
3.2 Local Gating Effect on Carbon Nanotube 34
3.3 Drain Voltage Effect on Carbon Nanotube 38
3.4 Schottky Barrier Calculation of the CNFET 41
3.5 Summary 42
4 Electric Current Distribution of a Multiwall Carbon Nanotube 43
4.1 Current Distribution on the MWCNT 48
4.2 Current Distribution on the MWCNT at Different Applied Current. 50
4.3 Summary 57
5 Conclusion 58
References 60
dc.language.isoen
dc.subject穿透式電子顯微鏡zh_TW
dc.subject奈米碳管zh_TW
dc.subjectcarbon nanotubeen
dc.subjectTEMen
dc.title利用穿透式電子顯微鏡觀測多層奈米碳管的三電極特性zh_TW
dc.titleThe Electrical Properties of Multiwall Carbon Nanotubes Studied by Transmission Electron Microscope with Three Electrodesen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.oralexamcommittee邱雅萍,蘇維彬,陳永芳,陳福榮,陳啟東
dc.subject.keyword穿透式電子顯微鏡,奈米碳管,zh_TW
dc.subject.keywordTEM,carbon nanotube,en
dc.relation.page64
dc.identifier.doi10.6342/NTU201603702
dc.rights.note有償授權
dc.date.accepted2016-10-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved