請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48779完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃良得(Lean-Teik Ng) | |
| dc.contributor.author | Chun-Hsien Yang | en |
| dc.contributor.author | 楊鈞憲 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:09:14Z | - |
| dc.date.available | 2020-02-21 | |
| dc.date.copyright | 2017-02-21 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-11-03 | |
| dc.identifier.citation | 王硯、趙小京、唐法娣。2001。蟬花藥理作用的初步探討。浙江中醫雜誌,36(5): 219-220 。
宋捷民、忻家礎、朱英。2007。蟬花對小鼠血糖及造血功能影響。中華中醫藥學刊,25(6):1144-1145。 俞瀅、顧蕾、陳琪琪、何依玲。1997。蟬花的化學成分分析。杭州師範大學學報 自然科學版,(6): 63-65。 徐紅娟、毛先兵、朱華李、莫志宏。2008。中藥蟬花的研究概況。重慶中草藥研究,(2): 43-46。 徐紅娟、莫志宏、余佳文、朱華李、毛先兵。2009。蟬花生物活性物質研究進展。中國藥業,18(4):19-21。 陳勁初。2012。南方蟲草之后:蟬花。臺灣:元氣齋出版社。pp. 34-39。 許勝傑、葉淑幸、陳勁初。2011。新資源食品蟬花菌絲體的開發。食藥用菌,19(6): 34-37。 溫魯、唐玉玲、張平。2006。蟬花與有關蟲草活性成分檢測比較。江蘇中醫藥 27(1): 45-46 。 譚樹明、方煥謀。1991。廣東兩種蟬花的研究。中國蟲生真菌研究與應用討論會。中國福建省。 Aspinall, G. O. 2014. The polysaccharides. United States: Academic Press. 365-411. Barker, S., Bourne, E., Stacey, M., & Whiffen, D. 1954. Infra-red spectra of carbohydrates. Part I. Some derivatives of D-glucopyranose. Journal of the Chemical Society (Resumed), 171-176. Bohn, J. A., & BeMiller, J. N. 1995. (1→3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydrate Polymers, 28(1), 3-14. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. Buranov, A. U., & Mazza, G. 2010. Extraction and characterization of hemicelluloses from flax shives by different methods. Carbohydrate Polymers, 79(1), 17-25. Buswell, C. 1996. Beta thalassaemia. Professional Nurse, 12(2), 145-147. Chan, G. C. F., Chan, W. K., & Sze, D. M. Y. 2009. The effects of β-glucan on human immune and cancer cells. Journal of Hematology & Oncology, 2(1), 1-11. Chang, S., & Buswell, J. 1996. Mushroom nutriceuticals. World Journal of Microbiology and Biotechnology, 12(5), 473-476. Chen, C. C., Liu, Y. W., Ker, Y. B., Wu, Y. Y., Lai, E. Y., Chyau, C. C., Hseu, T. H., & Peng, R. Y. 2007a. Chemical characterization and anti-inflammatory effect of polysaccharides fractionated from submerge-cultured Antrodia camphorata mycelia. Journal of Agricultural and Food Chemistry, 55(13), 5007-5012. Chen, J., & Seviour, R. 2007b. Medicinal importance of fungal β-(1→3),(1→6)-glucans. Mycological Research, 111(6), 635-652. Chen, X., Xu, X., Zhang, L., & Zeng, F. 2009. Chain conformation and anti-tumor activities of phosphorylated (1→3)-β-D-glucan from Poria cocos. Carbohydrate Polymers, 78(3), 581-587. Chi, D. S., Qui, M., Krishnaswamy, G., Li, C., & Stone, W. 2003. Regulation of nitric oxide production from macrophages by lipopolysaccharide and catecholamines. Nitric Oxide, 8(2), 127-132. Choi, E. M., Koo, S. J., & Hwang, J. K. 2004. Immune cell stimulating activity of mucopolysaccharide isolated from yam (Dioscorea batatas). Journal of Ethnopharmacology, 91(1), 1-6. Cobb, J. P., & Danner, R. L. 1996. Nitric oxide and septic shock. the Journal of the American Medical Association, 275(15), 1192-1196. Dai, J., Wu, Y., Chen, S. W., Zhu, S., Yin, H. P., Wang, M., & Tang, J. 2010. Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohydrate Polymers, 82(3), 629-635. Dinarello, C. A., & Wolff, S. M. 1993. The role of interleukin-1 in disease. New England Journal of Medicine, 328(2), 106-113. Escarnot, E., Aguedo, M., Agneessens, R., Wathelet, B., & Paquot, M. 2011. Extraction and characterization of water-extractable and water-unextractable arabinoxylans from spelt bran: Study of the hydrolysis conditions for monosaccharides analysis. Journal of Cereal Science, 53(1), 45-52. Falch, B. H., Espevik, T., Ryan, L., & Stokke, B. T. 2000. The cytokine stimulating activity of (1→3)-β-D-glucans is dependent on the triple helix conformation. Carbohydrate Research, 329(3), 587-596. Fischer, G., Braun, S., Thissen, R., & Dott, W. 2006. FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. Journal of Microbiological Methods, 64(1), 63-77. Fujita, T., Inoue, K., Yamamoto, S., Ikumoto, T., Sasaki, S., Toyama, R., Chiba, K., Hoshino, Y., & Okumoto, T. 1994. Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite. The Journal of Antibiotics, 47(2), 208-215. Ganeshpurkar, A., Rai, G., & Jain, A. 2010. Medicinal mushrooms: Towards a new horizon. Pharmacognosy Reviews, 4(8), 127-135. Gao, Q., Seljelid, R., Chen, H., & Jiang, R. 1996. Characterisation of acidic heteroglycans from Tremella fuciformis Berk with cytokine stimulating activity. Carbohydrate Research, 288, 135-142. Gerlier, D., & Thomasset, N. 1986. Use of MTT colorimetric assay to measure cell activation. Journal of Immunological Methods, 94(1-2), 57-63. Giavasis, I. 2014. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Current Opinion in Biotechnology, 26, 162-173. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry, 126(1), 131-138. Hanada, T., & Yoshimura, A. 2002. Regulation of cytokine signaling and inflammation. Cytokine & Growth Factor Reviews, 13(4), 413-421. Hassid, W. 1969. Biosynthesis of oligosaccharides and polysaccharides in plants. Science, 165(3889), 137-144. Henry, T., Iwen, P. C., & Hinrichs, S. H. 2000. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. Journal of Clinical Microbiology, 38(4), 1510-1515. Huang, X. Y., Kong, X. F., Wang, D. Y., & Hu, Y. L. 2007. Research progress on sulfating modification of polysaccharides and sulfated polysaccharides. Natural Product Research & Development, 19(2), 328-332. Jagger, D. V., Kredich, N. M., & Guarino, A. J. 1961. Inhibition of Ehrlich mouse ascites tumor growth by cordycepin. Cancer Research, 21(2), 216-220. Jedinak, A., Dudhgaonkar, S., Wu, Q. L., Simon, J., & Sliva, D. 2011. Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-κB and AP-1 signaling. Nutrition Journal, 10(1), 1-10. Joseph, S., Sabulal, B., George, V., Antony, K., & Janardhanan, K. 2011. Antitumor and anti-inflammatory activities of polysaccharides isolated from Ganoderma lucidum. Acta Pharmaceutica, 61(3), 335-342. Kawagishi, H., Kanao, T., Inagaki, R., Mizuno, T., Shimura, K., Ito, H., Hagiwara, T., & Nakamura, T. 1990. Formolysis of a potent antitumor (1→6)-β-D-glucan-protein complex from Agaricus blazei fruiting bodies and antitumor activity of the resulting products. Carbohydrate Polymers, 12(4), 393-403. Kiho, T., Miyamoto, I., Nagai, K., Ukai, S., & Hara, C. 1988. Minor, protein-containing galactomannans from the insect-body portion of the fungal preparation Chán huā (Cordyceps cicadae). Carbohydrate Research, 181, 207-215. Kiho, T., Nagai, K., Miyamoto, I., Watanabe, T., & Ukai, S. 1990. [Polysaccharides in fungi. XXV. Biological activities of two galactomannans from the insect-body portion of Chan hua (fungus: Cordyceps cicadae)]. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan, 110(4), 286-288. Kim, H. S., Kim, Y. J., Lee, H. K., Ryu, H. S., Kim, J. S., Yoon, M. J., Kang, J. S., Hong, J. T., Kim, Y., & Han, S. B. 2012. Activation of macrophages by polysaccharide isolated from Paecilomyces cicadae through toll-like receptor 4. Food and Chemical Toxicology, 50(9), 3190-3197. Lee, Y. B., Nagai, A., & Kim, S. U. 2002. Cytokines, chemokines, and cytokine receptors in human microglia. Journal of Neuroscience Research, 69(1), 94-103. Li, S. P., Li, P., Dong, T. T. X., & Tsim, K. W. K. 2001. Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia. Phytomedicine, 8(3), 207-212. Li, S. P., Su, Z. R., Dong, T. T. X., & Tsim, K. W. K. 2002. The fruiting body and its caterpillar host of Cordyceps sinensis show close resemblance in main constituents and anti-oxidation activity. Phytomedicine, 9(4), 319-324. Liaudet, L., Soriano, F., & Szabo, C. 2000. Biology of nitric oxide signaling. Critical Care Medicine, 28(4 Suppl), N37-52. Lim, S. F., Zheng, Y. M., Zou, S. W., & Chen, J. P. 2008. Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study. Environmental Science & Technology, 42(7), 2551-2556. Lindequist, U., Niedermeyer, T. H., & Jülich, W. D. 2005. The pharmacological potential of mushrooms. Evidence-Based Complementary and Alternative Medicine, 2(3), 285-299. Liu, X. Y., Wang, Q., Cui, S. W., & Liu, H. Z. 2008. A new isolation method of β-D-glucans from spent yeast Saccharomyces cerevisiae. Food Hydrocolloids, 22(2), 239-247. Lowe, E., Rice, P., Ha, T., Li, C., Kelley, J., Ensley, H., Lopez-Perez, J., Kalbfleisch, J., Lowman, D., & Margl, P. 2001. A (1→3)-β-D-linked heptasaccharide is the unit ligand for glucan pattern recognition receptors on human monocytes. Microbes and Infection, 3(10), 789-797. Lull, C., Wichers, H. J., & Savelkoul, H. F. 2005. Anti-inflammatory and immunomodulating properties of fungal metabolites. Mediators of Inflammation, 2005(2), 63-80. Luo, J., Liu, J., Sun, Y., Ye, H., Zhou, C., & Zeng, X. 2010. Medium optimization, preliminary characterization and antioxidant activity in vivo of mycelial polysaccharide from Phellinus baumii Pilát. Carbohydrate Polymers, 81(3), 533-540. Möller, E., Bahnweg, G., Sandermann, H., & Geiger, H. 1992. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Research, 20(22), 6115. MacMicking, J., Xie, Q. W., & Nathan, C. 1997. Nitric oxide and macrophage function. Annual Review of Immunology, 15(1), 323-350. Maeda, Y. Y., Watanabe, S. T., Chihara, C., & Rokutanda, M. 1988. Denaturation and renaturation of a β-1,6; 1,3-glucan, lentinan, associated with expression of T-cell-mediated responses. Cancer Research, 48(3), 671-675. Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S. I., & Lee, Y. C. 2005. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Analytical Biochemistry, 339(1), 69-72. Mathlouthi, M., Seuvre, A. M., & Koenig, J. L. 1986. FT-IR and laser-Raman spectra of cytosine and cytidine. Carbohydrate Research, 146(1), 1-13. Miranda, K. M., Espey, M. G., & Wink, D. A. 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 5(1), 62-71. Miyazaki, T., Oikawa, N., & Yamada, H. 1977. Studies on fungal polysaccharides. XX. Galactomannan of Cordyceps sinensis. Chemical and Pharmaceutical Bulletin, 25(12), 3324-3328. Mizuno, T. 1995. Bioactive biomolecules of mushrooms: food function and medicinal effect of mushroom fungi. Food Reviews International, 11(1), 5-21. Mizuno, T. 1999. The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan (review). International Journal of Medicinal Mushrooms, 1(1), 9-29. Mizuno, T., Saito, H., Nishitoba, T., & Kawagishi, H. 1995. Antitumor‐active substances from mushrooms. Food Reviews International, 11(1), 23-61. Moncada, S., & Higgs, E. 1991. Endogenous nitric oxide: physiology, pathology and clinical relevance. European Journal of Clinical Investigation, 21(4), 361-374. Moradali, M. F., Mostafavi, H., Ghods, S., & Hedjaroude, G. A. 2007. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology, 7(6), 701-724. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63. Ng, M. L., & Yap, A. T. 2002. Inhibition of human colon carcinoma development by lentinan from shiitake mushrooms (Lentinus edodes). the Journal of Alternative & Complementary Medicine, 8(5), 581-589. Ng, T., & Wang, H. 2005. Pharmacological actions of Cordyceps, a prized folk medicine. Journal of Pharmacy and Pharmacology, 57(12), 1509-1519. Nicoletti, I., Migliorati, G., Pagliacci, M., Grignani, F., & Riccardi, C. 1991. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. Journal of Immunological Methods, 139(2), 271-279. Nie, S. P., & Xie, M. Y. 2011. A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocolloids, 25(2), 144-149. Nie, S. p., Zhang, H., Li, W., & Xie, M. 2013. Current development of polysaccharides from Ganoderma: Isolation, structure and bioactivities. Bioactive Carbohydrates and Dietary Fibre, 1(1), 10-20. Nussler, A. K., & Billiar, T. R. 1993. Inflammation, immunoregulation, and inducible nitric oxide synthase. Journal of Leukocyte Biology, 54(2), 171-178. Palmer, R., Ashton, D., & Moncada, S. 1988. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature, 333(6174), 664-666. Playfair, J. H. L., & Chain, B. M. 2009. Immunology at a Glance. UK: Wiley. 1-109. Possel, H., Noack, H., Putzke, J., Wolf, G., & Sies, H. 2000. Selective upregulation of inducible nitric oxide synthase (iNOS) by lipopolysaccharide (LPS) and cytokines in microglia: in vitro and in vivo studies. Glia, 32(1), 51-59. Ramberg, J. E., Nelson, E. D., & Sinnott, R. A. 2010. Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutrition Journal, 9, 54-75. Rimawi, B. H. 2014. Infectious comorbidities encountered in obstetrics and neonatology. Foster city, California, USA: OMICS Group eBooks. 87. Rink, L., & Kirchner, H. 1996. Recent progress in the tumor necrosis factor-α field. International Archives of Allergy and Immunology, 111(3), 199-209. Sadler, M. 2003. Nutritional properties of edible fungi. Nutrition Bulletin, 28(3), 305-308. Satitmanwiwat, S., Ratanakhanokchai, K., Laohakunjit, N., Chao, L. K., Chen, S. T., Pason, P., Tachaapaikoon, C., & Kyu, K. L. 2012. Improved purity and immunostimulatory activity of β-(1→3)(1→6)-glucan from Pleurotus sajor-caju using cell wall-degrading enzymes. Journal of Agricultural and Food Chemistry, 60(21), 5423-5430. Sautebin, L. 2000. Prostaglandins and nitric oxide as molecular targets for anti-inflammatory therapy. Fitoterapia, 71, S48-S57. Schepetkin, I. A., & Quinn, M. T. 2006. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. International Immunopharmacology, 6(3), 317-333. Schwacha, M. G., & Chaudry, I. H. 2002. The cellular basis of post-burn immunosuppression: Macrophages and mediators (Review). International Journal of Molecular Medicine, 10(3), 239-243. Silveira, M. L., Smiderle, F. R., Moraes, C. P., Borato, D. G., Baggio, C. H., Ruthes, A. C., Wisbeck, E., Sassaki, G. L., Cipriani, T. R., & Furlan, S. A. 2014. Structural characterization and anti-inflammatory activity of a linear β-D-glucan isolated from Pleurotus sajor-caju. Carbohydrate Polymers, 113, 588-596. Sorimachi, K., Niwa, A., Yamazaki, S., Toda, S., & Yasumura, Y. 1990. Anti-viral activity of water-solubilized lignin derivatives in vitro. Agricultural and Biological Chemistry, 54(5), 1337-1339. Su, C. H., Lai, M. N., Lin, C. C., & Ng, L. T. 2016. Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected medicinal mushrooms. Applied Microbiology and Biotechnology, 100(10), 4385-4393. Suzuki, K., Ogura, M., Abe, Y., Suzuki, T., Tobinai, K., Ando, K., Taniwaki, M., Maruyama, D., Kojima, M., & Kuroda, J. 2015. Phase 1 study in Japan of siltuximab, an anti-IL-6 monoclonal antibody, in relapsed/refractory multiple myeloma. International Journal of Hematology, 101(3), 286-294. Synytsya, A., Míčková, K., Synytsya, A., Jablonský, I., Spěváček, J., Erban, V., Kováříková, E., & Čopíková, J. 2009. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydrate Polymers, 76(4), 548-556. Synytsya, A., & Novák, M. 2013. Structural diversity of fungal glucans. Carbohydrate Polymers, 92(1), 792-809. Takano, F., Yahagi, N., Yahagi, R., Takada, S., Yamaguchi, M., Shoda, S., Murase, T., Fushiya, S., & Ohta, T. 2005. The liquid culture filtrates of Paecilomyces tenuipes (Peck) Samson (= Isaria japonica Yasuda) and Paecilomyces cicadae (Miquel) Samson (= Isaria sinclairii (Berk.) Llond) regulate Th1 and Th2 cytokine response in murine Peyer's patch cells in vitro and ex vivo. International Immunopharmacology, 5(5), 903-916. Ukai, S., Matsuura, S., Hara, C., Kiho, T., & Hirose, K. 1982. Structure of a new galactomannan from the ascocarps of Cordyceps cicadae Shing. Carbohydrate Research, 101(1), 109-116. Vetvicka, V., & Yvin, J. C. 2004. Effects of marine β−1, 3 glucan on immune reactions. International Immunopharmacology, 4(6), 721-730. Wang, X., Zhang, Z., Yao, Q., Zhao, M., & Qi, H. 2013. Phosphorylation of low-molecular-weight polysaccharide from Enteromorpha linza with antioxidant activity. Carbohydrate Polymers, 96(2), 371-375. Wasser, S. P., & Weis, A. L. 1999. Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives (review). International Journal of medicinal mushrooms, 1(1), 31-62. Wei, X. Q., Charles, I. G., Smith, A., Ure, J., Feng, G. J., Huang, F. P., Xu, D., Mullers, W., Moncada, S., & Liew, F. Y. 1995. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature, 375(6530), 408-411. Weng, S. C., Chou, C. J., Lin, L. C., Tsai, W. J., & Kuo, Y. C. 2002. Immunomodulatory functions of extracts from the Chinese medicinal fungus Cordyceps cicadae. Journal of Ethnopharmacology, 83(1), 79-85. White, T. J., Bruns, T., Lee, S., & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, 18(1), 315-322. Wojcikowski, K., Johnson, D. W., & Gobe, G. 2006. Herbs or natural substances as complementary therapies for chronic kidney disease: ideas for future studies. Journal of Laboratory and Clinical Medicine, 147(4), 160-166. Wong, C., Leung, K., Fung, K., & Choy, Y. 1994. Immunomodulatory and anti-tumour polysaccharides from medicinal plants. Journal of International Medical Research, 22(6), 299-312. Wu, B., Cui, J., Zhang, C., & Li, Z. 2012. A polysaccharide from Agaricus blazei inhibits proliferation and promotes apoptosis of osteosarcoma cells. International Journal of Biological Macromolecules, 50(4), 1116-1120. Wu, M. J., Weng, C. Y., Wang, L., & Lian, T. W. 2005. Immunomodulatory mechanism of the aqueous extract of sword brake fern (Pteris ensiformis Burm.). Journal of Ethnopharmacology, 98(1), 73-81. Wu, S. J., Liaw, C. C., Pan, S. Z., Yang, H. C., & Ng, L. T. 2013. Phellinus linteus polysaccharides and their immunomodulatory properties in human monocytic cells. Journal of Functional Foods, 5(2), 679-688. Wu, Z., Zhang, M., Xie, M., Dai, Z., Wang, X., Hu, B., Ye, H., & Zeng, X. 2016. Extraction, characterization and antioxidant activity of mycelial polysaccharides from Paecilomyces hepiali HN1. Carbohydrate Polymers, 137, 541-548. Yanaki, T., Ito, W., Tabata, K., Kojima, T., Norisuye, T., Takano, N., & Fujita, H. 1983. Correlation between the antitumor activity of a polysaccharide schizophyllan and its triple-helical conformation in dilute aqueous solution. Biophysical Chemistry, 17(4), 337-342. Yang, P., Liang, M., Zhang, Y., & Shen, B. 2008. Clinical application of a combination therapy of lentinan, multi-electrode RFA and TACE in HCC. Advances in Therapy, 25(8), 787-794. Yuan, J., Cheng, X., & Hou, Y. 2005. Studies on the components and pharmacological action of polysaccharide from Cordyceps sinensis. Food Drug, 7, 45-48. Zeković, D. B., Kwiatkowski, S., Vrvić, M. M., Jakovljević, D., & Moran, C. A. 2005. Natural and modified (1→3)-β-D-glucans in health promotion and disease alleviation. Critical Reviews in Biotechnology, 25(4), 205-230. Zhang, M., Cui, S., Cheung, P., & Wang, Q. 2007. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends in Food Science & Technology, 18(1), 4-19. Zhou, X., Gong, Z., Su, Y., Lin, J., & Tang, K. 2009. Cordyceps fungi: natural products, pharmacological functions and developmental products. Journal of Pharmacy and Pharmacology, 61(3), 279-291. Zhou, X., Luo, L., Dressel, W., Shadier, G., Krumbiegel, D., Schmidtke, P., Zepp, F., & Meyer, C. U. 2008. Cordycepin is an immunoregulatory active ingredient of Cordyceps sinensis. the American Journal of Chinese Medicine, 36(05), 967-980. Zhuang, C., Mizuno, T., Shimada, A., Ito, H., Suzuki, C., Mayuzumi, Y., Okamoto, H., Ma, Y., & Li, J. 1993. Antitumor protein-containing polysaccharides from a Chinese mushroom Fengweigu or Houbitake, Pleurotus sajor-caju (Fr.) sings. Bioscience, Biotechnology, and Biochemistry, 57(6), 901-906. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48779 | - |
| dc.description.abstract | 大蟬花 (Cordyceps cicadae Shing, CC) 為高經濟價值之傳統藥材,其具有清熱解毒、補肝腎、明目安神及增強免疫等功效。本研究目的首先確認採集之本土大蟬花子實體 (CCF) 之基源,進而探討其人工栽培子實體之多醣物化特性及免疫調節活性。根據ITS定序的基源分析結果確認CCF為大蟬花物種,其ITS序列已登錄於NCBI的GenBank資料庫中,登錄碼為KP771879。大蟬花子實體之水溶性粗多醣CP及純化多醣CPP產率分別為3.4%及1.2%。在物化性質方面,CPP總糖含量為75.1%,蛋白質含量為3.92%,而CP總糖含量為53.4%,蛋白質含量為6.29%,兩者在FT-IR的圖譜曲線呈現相近趨勢,皆為典型的多醣圖譜,具有各種如C-OH、C-H及C-O-C等多醣特徵吸收峰。CP與CPP皆是以甘露糖為主,其次為葡萄糖及半乳糖所組成的異質性多醣,然而兩者的差異主要在於分子量的分布情形,CP包含三個分子量大小的分布,分別是21.5 kDa、3.1 kDa 及少量678 kDa,而CPP則是由24.3 kDa所組成的單一分子量多醣。在LPS誘發RAW264.7細胞發炎模式中,CP與CPP在不影響細胞存活率情況下,對於促發炎因子的分泌具有不同程度的抑制效果,其中CPP呈劑量效應抑制nitric oxide (NO)、IL-1β及TNF-α之分泌,但對IL-6分泌抑制則不明顯;CP呈劑量效應抑制IL-1β及TNF-α的分泌,但對NO及IL-6的抑制僅在高濃度CP (80及160 μg/mL) 處理下才有效果。在以BALB/c小鼠為實驗動物下,CP各劑量的處理 (75、150及300 mg/kg) 相較於控制組,對小鼠脾臟細胞受LPS刺激所產生的IL-1β及IL-6均呈劑量效應的抑制,且不影響脾臟細胞存活率及細胞族群分布比例。從上述結果證明,大蟬花水溶性粗多醣CP及水溶性純化多醣CPP的物化性質雖有差異,但在離體或活體活性試驗中皆表現良好抗發炎活性。 | zh_TW |
| dc.description.abstract | Cordyceps cicadae (CC) is a high economic value ingredient of traditional medicine. It is believed to possess the properties of detoxifying, invigorating the liver and kidney, improving eye sight, enhancing immune function, and others. This study aimed to validate the authenticity of locally collected CCF, and examine the physicochemical properties and immunomodulatory activities of polysaccharides from cultivated CC fruiting bodies. According to the result of ITS phylogenetic analysis, CCF was confirmed to be CC and its ITS sequences has been registered in the NCBI GenBank as an accession number KP771879. The yields of water-soluble crude polysaccharides (CP) and purified polysaccharides (CPP) from CC fruiting bodies were 3.4% and 1.2%, respectively. Results of the physicochemical properties showed that the contents of total carbohydrate and protein in CPP were 75.1% and 3.92%, respectively, whereas CP were 53.4% and 6.29%, respectively. The FT-IR spectra of these two polysaccharides showed a relatively similar profile, which possessed the characteristic peak of the C-OH, C-H, and C-O-C stretching vibration. CP and CPP showed a similar monosaccharide composition, of which the predominant monosaccharide was mannose, followed by glucose and galactose. However, there were apparent differences in molecular weight distribution between CP and CPP; two major (21.5 kDa and 3.1 kDa) and one minor (678 kDa) macromolecular populations were found in CP, whereas CPP contained only one macromolecular population (24.3 kDa). In anti-inflammatory study, results showed that CP and CPP had different degrees of inhibition on the inflammatory factors in the LPS-induced RAW264.7 microphages. CPP dose-dependently suppressed the production of nitric oxide (NO), IL-1β, and TNF-α, with the exception of IL-6. Although CP had similar effects on the IL-1β and TNF-α production, its inhibitory effects on NO and IL-6 were only noted in high-doses (80 and 160 μg/mL). In in-vivo study, results showed that compared with the control group, animals treated with different doses of CP (75, 150, and 300 mg/kg) showed no effect on the cell viability and cellularity of splenocytes but dose-dependently suppressed the LPS-induced IL-1β and IL-6 production from mice splenocytes. In conclusion, this study indicates that although CP and CPP possess differences in the physicochemical properties, they are effective in inhibiting the production of inflammatory mediators both in-vitro and in-vivo. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:09:14Z (GMT). No. of bitstreams: 1 ntu-105-R03623014-1.pdf: 3094801 bytes, checksum: 676091c3e84845f6528741e911327fdc (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 謝誌 I
摘要 II Abstract III 目錄 V 圖目錄 IX 表目錄 XI 第一章、前言 1 第二章、文獻回顧 3 1. 食藥用菇類 3 2. 大蟬花 (Cordyceps cicadae) 6 2.1 大蟬花之學名、俗名與分類 6 2.2 大蟬花之產地、生態與型態特徵 6 2.3 大蟬花之形成 6 2.4 大蟬花之化學成分 7 2.5 大蟬花之生物活性 7 3. 菇類多醣 10 3.1 多醣體簡介 10 3.2 菇類多醣體之物化特性 10 3.3 菇類多醣體之免疫調節活性 11 4. 免疫系統 16 4.1 巨噬細胞與免疫 18 4.2 發炎反應 18 4.3 細胞激素 18 4.3.1 一氧化氮 (NO) 19 4.3.2 IL-1β、TNF-α與IL-6 19 第三章、研究目的 22 第四章、研究架構 23 第五章、材料與方法 24 1. 大蟬花材料 24 2. 種源鑑定 24 2.1 大蟬花子實體DNA萃取 24 2.2 大蟬花子實體ITS定序分析 25 2.2.1 聚合酶鏈鎖反應 (polymerase chain reaction, PCR) 25 2.2.2 PCR產物分析 25 2.2.3 PCR產物純化 25 2.2.4 DNA接合反應 (DNA ligation) 26 2.2.5 質體轉殖 (transformation) 26 2.2.6 種源比對 26 3. 大蟬花子實體水溶性粗多醣與純化多醣之製備 27 4. CP與CPP之產率分析 28 5. 多醣物化性質分析 29 5.1 總糖含量測定 29 5.2 蛋白質含量測定 30 5.3 官能基分析 30 5.4 均質性及分子量測定 30 5.5 單醣組成分析 31 5.5.1 甲醇分解反應 31 5.5.2 酸水解反應 31 5.5.3 衍生化反應 31 5.5.4 HPLC分析 32 6. 離體活性評估實驗 (In vitro) 33 6.1 巨噬細胞培養 33 6.2 細胞存活率分析 (MTT assay) 34 6.3 一氧化氮 (nitric oxide, NO) 生成量分析 35 6.4 細胞激素IL-1β, IL-6及TNF-α之定量分析 36 7. 活體活性評估實驗 (In vivo) 37 7.1實驗設計 37 7.2 脾臟指數分析 37 7.3 脾臟細胞之收集培養 37 7.3.1 細胞存活率分析 (MTT assay) 38 7.3.2 細胞激素分泌量之定量分析 38 7.4 免疫細胞族群分析 39 8. 統計分析 40 第六章、結果 41 1. 大蟬花種源鑑定 41 2. 大蟬花子實體水溶性粗多醣與純化多醣之產率 44 3. 多醣體物化性質 46 3.1 總糖與蛋白質含量 46 3.2 官能基 48 3.3 均質性與分子量 51 3.4 單醣組成 53 4. 離體活性評估 (In vitro) 55 4.1 細胞存活率 55 4.2 促發炎介質一氧化氮 (NO)的生成 57 4.3 細胞激素IL-1β, IL-6及TNF-α的分泌 60 5. 活體活性評估 (In vivo) 65 5.1 細胞存活率 65 5.2 脾臟指數與脾臟細胞之族群分布 67 5.3 細胞激素IL-1β, IL-6及TNF-α的分泌 70 第七章、綜合討論 74 第八章、結論 78 第九章、參考文獻 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 大蟬花 | zh_TW |
| dc.subject | 抗發炎活性 | zh_TW |
| dc.subject | 物化性質 | zh_TW |
| dc.subject | 多醣體 | zh_TW |
| dc.subject | physicochemical properties | en |
| dc.subject | polysaccharides | en |
| dc.subject | anti-inflammatory activities | en |
| dc.subject | Cordyceps cicadae | en |
| dc.title | 人工培養大蟬花之多醣物化性質及免疫調節活性研究 | zh_TW |
| dc.title | Studies on the physicochemical properties and immunomodulatory activities of polysaccharides from cultivated Cordyceps cicadae | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹東榮,呂廷璋,徐駿森 | |
| dc.subject.keyword | 大蟬花,多醣體,物化性質,抗發炎活性, | zh_TW |
| dc.subject.keyword | Cordyceps cicadae,polysaccharides,physicochemical properties,anti-inflammatory activities, | en |
| dc.relation.page | 91 | |
| dc.identifier.doi | 10.6342/NTU201603722 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-11-04 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
