Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48778
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施養信
dc.contributor.authorChao-Yuan Weien
dc.contributor.author韋朝源zh_TW
dc.date.accessioned2021-06-15T11:09:14Z-
dc.date.available2019-02-08
dc.date.copyright2017-02-08
dc.date.issued2016
dc.date.submitted2016-11-03
dc.identifier.citationReference
Abdallah, M.A.E. and S. Harrad. 2009. Personal exposure to HBCDs and its degradation products via ingestion of indoor dust. Environ Int 35: 870-876.
Aeschbacher, M., M. Sander and R.P. Schwarzenbach. 2009. Novel electrochemical approach to assess the redox properties of humic substances. Environmental science & technology 44: 87-93.
Aeschbacher, M., D. Vergari, R.P. Schwarzenbach and M. Sander. 2011. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environmental science & technology 45: 8385-8394.
Aiken, G.R., D.M. McKnight, R.L. Wershaw and P. MacCarthy. 1985. Humic substances in soil, sediment, and water: geochemistry, isolation and characterizationJohn Wiley & Sons.
Akaighe, N., S.W. Depner, S. Banerjee, V.K. Sharma and M. Sohn. 2012. The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter. Science of the Total Environment 441: 277-289.
Akaighe, N., R.I. MacCuspie, D.A. Navarro, D.S. Aga, S. Banerjee, M. Sohn, et al. 2011. Humic Acid-Induced Silver Nanoparticle Formation Under Environmentally Relevant Conditions. Environmental Science & Technology 45: 3895-3901.
Albarede, F. 2011. Chalcophile Elements. In: M. Gargaud, R. Amils, J. C. Quintanilla, H. J. Cleaves, W. M. Irvine, D. L. Pinti and M. Viso, editors, Encyclopedia of Astrobiology. Springer Berlin Heidelberg, Berlin, Heidelberg. p. 283-283.
Angelico, R., A. Ceglie, J.Z. He, Y.R. Liu, G. Palumbo and C. Colombo. 2014. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite. Chemosphere 99: 239-247.
Arnot, J., L. McCarty, J. Armitage, L. Toose-Reid, F. Wania and I. Cousins. 2009. An evaluation of hexabromocyclododecane (HBCD) for persistent organic pollutant (POP) properties and the potential for adverse effects in the environment. Submitted to European Brominated Flame Retardant Industry Panel (EBFRIP) 26.
Bard, A.J., R. Parsons and J. Jordan. 1985. Standard potentials in aqueous solutionCRC press.
Benz, M., B. Schink and A. Brune. 1998. Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Applied and environmental microbiology 64: 4507-4512.
Beverskog, B. and I. Puigdomenech. 1997. Revised Pourbaix Diagrams for Copper at 25 to 300°C. Journal of The Electrochemical Society 144: 3476-3483.
Brezonik, P.L. 1993. Chemical kinetics and process dynamics in aquatic systemsCRC Press.
Chang, Y.J., Y.H. Shih, C.H. Su and H.C. Ho. 2016. Comparison of three analytical methods to measure the size of silver nanoparticles in real environmental water and wastewater samples. Journal of hazardous materials.
Chaudhuri, S.K., J.G. Lack and J.D. Coates. 2001. Biogenic magnetite formation through anaerobic biooxidation of Fe (II). Applied and environmental microbiology 67: 2844-2848.
Chaurand, P., J. Rose, V. Briois, L. Olivi, J.-L. Hazemann, O. Proux, et al. 2007. Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach. Journal of Hazardous Materials 139: 537-542.
Chen, J., B. Gu, R.A. Royer and W.D. Burgos. 2003. The roles of natural organic matter in chemical and microbial reduction of ferric iron. Science of the total environment 307: 167-178.
Chen, L.H., C.C. Huang and H.L. Lien. 2008. Bimetallic iron–aluminum particles for dechlorination of carbon tetrachloride. Chemosphere 73: 692-697.
Christensen, A.N., B. Lebech, N.H. Andersen and J.-C. Grivel. 2014. The crystal structure of paramagnetic copper (ii) oxalate (CuC 2 O 4): formation and thermal decomposition of randomly stacked anisotropic nano-sized crystallites. Dalton Transactions 43: 16754-16768.
Christian, P., F. Von der Kammer, M. Baalousha and T. Hofmann. 2008. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17: 326-343.
Cory, R.M. and D.M. McKnight. 2005. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental science & technology 39: 8142-8149.
Covaci, A., A.C. Gerecke, R.J. Law, S. Voorspoels, M. Kohler, N.V. Heeb, et al. 2006. Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. Environmental science & technology 40: 3679-3688.
Cuba-Chiem, L.T., L. Huynh, J. Ralston and D.A. Beattie. 2008. In situ particle film ATR FTIR spectroscopy of carboxymethyl cellulose adsorption on talc: binding mechanism, pH effects, and adsorption kinetics. Langmuir 24: 8036-8044.
Curtis, G.P. and M. Reinhard. 1994. Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic acid. Environmental Science & Technology 28: 2393-2401.
Dan, Y., W. Zhang, R. Xue, X. Ma, C. Stephan and H. Shi. 2015. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma–mass spectrometry analysis. Environmental science & technology 49: 3007-3014.
Darnerud, P.O. 2003. Toxic effects of brominated flame retardants in man and in wildlife. Environment international 29: 841-853.
Davis, J.W., S. Gonsior, G. Marty and J. Ariano. 2005. The transformation of hexabromocyclododecane in aerobic and anaerobic soils and aquatic sediments. Water Res 39: 1075-1084.
Degueldre, C., P.Y. Favarger and C. Bitea. 2004. Zirconia colloid analysis by single particle inductively coupled plasma–mass spectrometry. Analytica Chimica Acta 518: 137-142.
Degueldre, C., P.Y. Favarger, R. Rosse and S. Wold. 2006a. Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta 68: 623-628.
Degueldre, C., P.Y. Favarger and S. Wold. 2006b. Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Analytica Chimica Acta 555: 263-268.
Deonarine, A. and H. Hsu-Kim. 2009. Precipitation of mercuric sulfide nanoparticles in NOM-containing water: Implications for the natural environment. Environmental Science & Technology 43: 2368-2373.
Ding, Y., L. Zhu, N. Wang and H. Tang. 2013. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Applied Catalysis B: Environmental 129: 153-162.
Doong, R.A., K.T. Chen and H.C. Tsai. 2003. Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon−iron reductants. Environmental Science & Technology 37: 2575-2581.
Dunnivant, F.M., R.P. Schwarzenbach and D.L. Macalady. 1992. Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environmental Science & Technology 26: 2133-2141.
Eljarrat, E., A. De La Cal, D. Raldua, C. Duran and D. Barcelo. 2004. Occurrence and bioavailability of polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from the Cinca River, a tributary of the Ebro River (Spain). Environ. Sci. Technol. 38: 2603-2608.
Fan, J., Y. Guo, J. Wang and M. Fan. 2009. Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials 166: 904-910.
Fang, Z., X. Qiu, J. Chen and X. Qiu. 2011. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: Influencing factors, kinetics, and mechanism. Journal of Hazardous Materials 185: 958-969.
Fennelly, J.P. and A.L. Roberts. 1998. Reaction of 1, 1, 1-trichloroethane with zero-valent metals and bimetallic reductants. Environmental science & technology 32: 1980-1988.
Field, J.A., F. Cervantes, F. Van der Zee and G. Lettinga. 2000. Role of quinones in the biodegradation of priority pollutants: a review. Water Science and Technology 42: 215-222.
Fulda, B., A. Voegelin, K. Ehlert and R. Kretzschmar. 2013a. Redox transformation, solid phase speciation and solution dynamics of copper during soil reduction and reoxidation as affected by sulfate availability. Geochimica et Cosmochimica Acta 123: 385-402.
Fulda, B., A. Voegelin, F. Maurer, I. Christl and R. Kretzschmar. 2013b. Copper redox transformation and complexation by reduced and oxidized soil humic acid. 1. X-ray absorption spectroscopy study. Environ Sci Technol 47: 10903-10911.
Gaur, A., B.D. Shrivastava, and S.K. Joshi. 2009. Copper K-edge XANES of Cu (I) and Cu (II) oxide mixtures. Journal of Physics: Conference Series.
Génin, J.M., P. Refait, A. Olowe, M. Abdelmoula, I. Fall and S. Drissi. 1998. Identification of green rust compounds in the aqueous corrosion processes of steels; the case of microbially induced corrosion and use of 78 K CEMS. Hyperfine interactions 112: 47-51.
Gerecke, A.C., W. Giger, P.C. Hartmann, N.V. Heeb, H.-P.E. Kohler, P. Schmid, et al. 2006. Anaerobic degradation of brominated flame retardants in sewage sludge. Chemosphere 64: 311-317.
Geyer, H.J., K.W. Schramm, P.O. Darnerud, M. Aune, E.A. Feicht, K.W. Fried, et al. 2004. Terminal elimination half-lives of the brominated flame retardants TBBPA, HBCD, and lower brominated PBDEs in humans. Organohalogen compounds 66: 3867-3872.
Griffitt, R.J., J. Luo, J. Gao, J.C. Bonzongo and D.S. Barber. 2008. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry 27: 1972-1978.
Guerra, P., A. de la Cal, G. Marsh, D. Raldua, C. Barata, E. Eljarrat, et al. 2009. Transfer of hexabromocyclododecane from industrial effluents to sediments and biota: Case study in Cinca river (Spain). J Hydrol 378: 355-355.
Gupta, V. and A. Nayak. 2012. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical Engineering Journal 180: 81-90.
Hamilton, J., J. Farmer and R. Anderson. 1986. In situ Raman spectroscopy of anodic films formed on copper and silver in sodium hydroxide solution. Journal of the Electrochemical Society 133: 739-745.
Hayward, S.J., Y.D. Lei and F. Wania. 2006. Comparative evaluation of three high‐performance liquid chromatography–based Kow estimation methods for highly hydrophobic organic compounds: Polybrominated diphenyl ethers and hexabromocyclododecane. Environmental toxicology and chemistry 25: 2018-2027.
Heeb, N.V., W.B. Schweizer, M. Kohler and A.C. Gerecke. 2005. Structure elucidation of hexabromocyclododecanes-a class of compounds with a complex stereochemistry. Chemosphere 61: 65-73.
Heeb, N.V., W.B. Schweizer, P. Mattrel, R. Haag, A.C. Gerecke, P. Schmid, et al. 2008. Regio- and stereoselective isomerization of hexabromocyclododecanes (HBCDs): kinetics and mechanism of gamma- to alpha-HBCD isomerization. Chemosphere 73: 1201-1210.
Heeb, N.V., D. Zindel, B. Geueke, H.-P.E. Kohler and P. Lienemann. 2012. Biotransformation of Hexabromocyclododecanes (HBCDs) with LinB: An HCH-Converting Bacterial Enzyme. Environmental science & technology 46: 6566-6574.
Hees, J., A. Kriele and O.A. Williams. 2011. Electrostatic self-assembly of diamond nanoparticles. Chemical Physics Letters 509: 12-15.
Hiemstra, T., J. Antelo, R. Rahnemaie and W.H. van Riemsdijk. 2010. Nanoparticles in natural systems I: the effective reactive surface area of the natural oxide fraction in field samples. Geochimica et Cosmochimica Acta 74: 41-58.
Hofacker, A.F., A. Voegelin, R. Kaegi and R. Kretzschmar. 2013. Mercury mobilization in a flooded soil by incorporation into metallic copper and metal sulfide nanoparticles. Environmental science & technology 47: 7739-7746.
Huang, C.C., S.L. Lo and H.L. Lien. 2012. Zero-valent copper nanoparticles for effective dechlorination of dichloromethane using sodium borohydride as a reductant. Chemical Engineering Journal 203: 95-100.
Hutzinger, O. and H. Thoma. 1987. Polybrominated dibenzo-p-dioxins and dibenzofurans: the flame retardant issue. Chemosphere 16: 1877-1880.
Ilyas, M., A. Sudaryanto, I.E. Setiawan, A.S. Riyadi, T. Isobe, S. Takahashi, et al. 2011. Characterization of polychlorinated biphenyls and brominated flame retardants in sediments from riverine and coastal waters of Surabaya, Indonesia. Marine pollution bulletin 62: 89-98.
Jon, A., M. Lynn, A. James, T.-R. Liisa, W. Frank and C. Ian. 2009. An evaluation of hexabromocyclododecane. European Brominated Flame Retardant Industry Panel (EBFRIP).
Jones, D.A. 1996. Principles and prevention of corrosion.
Kappler, A. and S.B. Haderlein. 2003. Natural organic matter as reductant for chlorinated aliphatic pollutants. Environmental Science & Technology 37: 2714-2719.
Kim, Y.H. and E.R. Carraway. 2000. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environmental science & technology 34: 2014-2017.
Kirwan, L.J., P.D. Fawell and W. van Bronswijk. 2003. In situ FTIR-ATR examination of poly (acrylic acid) adsorbed onto hematite at low pH. Langmuir 19: 5802-5807.
Laborda, F., E. Bolea and J. Jiménez-Lamana. 2013. Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Analytical chemistry 86: 2270-2278.
Lai, B., Y. Zhang, Z. Chen, P. Yang, Y. Zhou and J. Wang. 2014. Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron–copper (Fe/Cu) bimetallic particles. Applied Catalysis B: Environmental 144: 816-830.
Laidler, K.J. 1984. The development of the Arrhenius equation. Journal of Chemical Education 61: 494.
Li, D., P.a. Peng, Z. Yu, W. Huang and Y. Zhong. 2016. Reductive transformation of hexabromocyclododecane (HBCD) by FeS. Water research 101: 195-202.
Lien, H.L. and W.X. Zhang. 1999. Transformation of chlorinated methanes by nanoscale iron particles. Journal of Environmental Engineering 125: 1042-1047.
Lien, H.L. and W.X. Zhang. 2007. Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Applied Catalysis B: Environmental 77: 110-116.
Lilana, B., K. Anna and S.K. Stefan. 2011. Conditions of anaerobic biodegradation of common brominated flame retardants based on model electrochemical studies of hexabromocyclododecane. Chemik 65.
Lin, C.J., S.L. Lo and Y.H. Liou. 2005. Degradation of aqueous carbon tetrachloride by nanoscale zerovalent copper on a cation resin. Chemosphere 59: 1299-1307.
Liou, Y.H., S.L. Lo and C.J. Lin. 2007. Size effect in reactivity of copper nanoparticles to carbon tetrachloride degradation. Water research 41: 1705-1712.
Liu, C., Y. Zhang, X. Yan, X. Zhang, C. Li, W. Yang, et al. 2006. Infrared absorption of human breast tissues in vitro. Journal of luminescence 119: 132-136.
Liu, J.F., Z.S. Zhao and G.B. Jiang. 2008. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental science & technology 42: 6949-6954.
Loeschner, K., J. Navratilova, C. K?bler, K. M?lhave, S. Wagner, F. von der Kammer, et al. 2013. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Analytical and bioanalytical chemistry 405: 8185-8195.
Luther, G.W., S.M. Theberge, T.F. Rozan, D. Rickard, C.C. Rowlands and A. Oldroyd. 2002. Aqueous Copper Sulfide Clusters as Intermediates during Copper Sulfide Formation. Environmental Science & Technology 36: 394-402.
Maithreepala, R.A. and R.A. Doong. 2004. Reductive Dechlorination of Carbon Tetrachloride in Aqueous Solutions Containing Ferrous and Copper Ions. Environmental Science & Technology 38: 6676-6684.
Maithreepala, R.A. and R.A. Doong. 2005. Enhanced Dechlorination of Chlorinated Methanes and Ethenes by Chloride Green Rust in the Presence of Copper(II). Environmental Science & Technology 39: 4082-4090.
Matheson, L.J. and P.G. Tratnyek. 1994. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology 28: 2045-2053.
Maurer, F., I. Christl, B. Fulda, A. Voegelin and R. Kretzschmar. 2013. Copper redox transformation and complexation by reduced and oxidized soil humic Acid. 2. Potentiometric titrations and dialysis cell experiments. Environ Sci Technol 47: 10912-10921.
Maurer, F., I. Christl, M. Hoffmann and R. Kretzschmar. 2012. Reduction and reoxidation of humic acid: influence on speciation of cadmium and silver. Environ Sci Technol 46: 8808-8816.
Maurer, F., I. Christl and R. Kretzschmar. 2010. Reduction and reoxidation of humic acid: influence on spectroscopic properties and proton binding. Environmental science & technology 44: 5787-5792.
Max, J.J. and C. Chapados. 2004. Infrared spectroscopy of aqueous carboxylic acids: Comparison between different acids and their salts. The Journal of Physical Chemistry A 108: 3324-3337.
Mayer, S.T. and R.H. Muller. 1992. An in situ Raman spectroscopy study of the anodic oxidation of copper in alkaline media. Journal of The Electrochemical Society 139: 426-434.
McIntyre, N.S. and M.G. Cook. 1975. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Analytical Chemistry 47: 2208-2213.
Mohn, W.W. and J.M. Tiedje. 1992. Microbial reductive dehalogenation. Microbiological reviews 56: 482-507.
Morris, S., C.R. Allchin, B.N. Zegers, J.J. Haftka, J.P. Boon, C. Belpaire, et al. 2004a. Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs. Environmental science & technology 38: 5497-5504.
Morris, S., C.R. Allchin, B.N. Zegers, J.J.H. Haftka, J.P. Boon, C. Belpaire, et al. 2004b. Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic Food Webs. Environmental Science & Technology 38: 5497-5504.
Morris, S., C.R. Allchin, B.N. Zegers, J.J.H. Haftka, J.P. Boon, C. Belpaire, et al. 2004c. Distributon and fate of HBCD and TBBPA brominated flame retardants in north sea estuaries and aquatic food webs. Environ. Sci. Technol. 38: 5497-5504.
Muftikian, R., Q. Fernando and N. Korte. 1995. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Research 29: 2434-2439.
Nadagouda, M.N., A.B. Castle, R.C. Murdock, S.M. Hussain and R.S. Varma. 2010. In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chemistry 12: 114-122.
Nilsson, L., D. Löf and B. Bergenståhl. 2008. Phenolic acid nanoparticle formation in iron-containing aqueous solutions. Journal of agricultural and food chemistry 56: 11453-11457.
O'Loughlin, E.J., D.R. Burris and C.A. Delcomyn. 1999a. Reductive dechlorination of trichloroethene mediated by humic-metal complexes. Environmental science & technology 33: 1145-1147.
O'Loughlin, E.J., D.R. Burris and C.A. Delcomyn. 1999b. Reductive Dechlorination of Trichloroethene Mediated by Humic−Metal Complexes. Environmental Science & Technology 33: 1145-1147.
O'Loughlin, E.J., K.M. Kemner and D.R. Burris. 2003. Effects of AgI, AuIII, and CuII on the Reductive Dechlorination of Carbon Tetrachloride by Green Rust. Environmental Science & Technology 37: 2905-2912.
Pacheco, M., E. Peña-Méndez and J. Havel. 2003. Supramolecular interactions of humic acids with organic and inorganic xenobiotics studied by capillary electrophoresis. Chemosphere 51: 95-108.
Pandey, A.K., S.D. Pandey and V. Misra. 2000. Stability constants of metal–humic acid complexes and its role in environmental detoxification. Ecotoxicology and Environmental Safety 47: 195-200.
Pattrick, R.A.D., J.F.W. Mosselmans, J.M. Charnock, K.E.R. England, G.R. Helz, C.D. Garner, et al. 1997. The structure of amorphous copper sulfide precipitates: An X-ray absorption study. Geochimica et Cosmochimica Acta 61: 2023-2036.
Poma, G., C. Roscioli and L. Guzzella. 2014. PBDE, HBCD, and novel brominated flame retardant contamination in sediments from Lake Maggiore (Northern Italy). Environmental Monitoring and Assessment 186: 7683-7692.
Ratasuk, N. and M.A. Nanny. 2007. Characterization and quantification of reversible redox sites in humic substances. Environmental science & technology 41: 7844-7850.
Refait, P., M. Abdelmoula and J.M. Génin. 1998. Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions. Corrosion Science 40: 1547-1560.
Ricca, G., L. Federico, C. Astori and R. Gallo. 1993. Structural investigations of humic acid from leonardite by spectroscopic methods and thermal analysis. Geoderma 57: 263-274.
Roosens, L., M.A.E. Abdallah, S. Harrad, H. Neels and A. Covaci. 2009. Exposure to hexabromocyclododecanes (HBCDs) via dust ingestion, but not diet, correlates with concentrations in human serum: preliminary results. Environmental health perspectives 117: 1707.
Ruan, T., Y.W. Wang, C. Wang, P. Wang, J.J. Fu, Y.G. Yin, et al. 2009. Identification and Evaluation of a Novel Heterocyclic Brominated Flame Retardant Tris(2,3-dibromopropyl) Isocyanurate in Environmental Matrices near a Manufacturing Plant in Southern China. Environ. Sci. Technol. 43: 3080-3086.
Schmidt, M.A., J.M. Gonzalez, J.J. Halvorson and A.E. Hagerman. 2013. Metal mobilization in soil by two structurally defined polyphenols. Chemosphere 90: 1870-1877.
Scott, D.T., D.M. McKnight, E.L. Blunt-Harris, S.E. Kolesar and D.R. Lovley. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental Science & Technology 32: 2984-2989.
Seah, M. and G. Smith. 1990. AES: Energy calibration of electron spectrometers. II—results of a BCRinterlaboratory comparison co‐sponsored by the vamas SCS TWP. Surface and interface analysis 15: 309-322.
Shih, Y.H., Y.C. Chen, M.Y. Chen, Y.T. Tai and C.P. Tso. 2009. Dechlorination of hexachlorobenzene by using nanoscale Fe and nanoscale Pd/Fe bimetallic particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 332: 84-89.
Shih, Y.H., C.Y. Hsu and Y.F. Su. 2011. Reduction of hexachlorobenzene by nanoscale zero-valent iron: Kinetics, pH effect, and degradation mechanism. Separation and Purification Technology 76: 268-274.
Slowey, A.J. 2010. Rate of formation and dissolution of mercury sulfide nanoparticles: The dual role of natural organic matter. Geochimica et Cosmochimica Acta 74: 4693-4708.
Staples, C.A., P.B. Dome, G.M. Klecka, S.T. Oblock and L.R. Harris. 1998. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36: 2149-2173.
Stevenson, F.J. 1994. Humus chemistry: genesis, composition, reactionsJohn Wiley & Sons.
Struyk, Z. and G. Sposito. 2001. Redox properties of standard humic acids. Geoderma 102: 329-346.
Swindoll, M., R. Stahl Jr and S.J. Ells. 2000. Natural remediation of environmental contaminants: its role in ecological risk assessment and risk managementSociety of Environmental Toxicology and Chemistry.
Tamaura, Y., T. Yoshida and T. Katsura. 1984. The synthesis of green rust II (Fe(III)1–Fe(II)2) and its spontaneous transformation into Fe3O4. Bulletin of the Chemical Society of Japan 57: 2411-2416.
Telgmann, L., C. Metcalfe and H. Hintelmann. 2014. Rapid size characterization of silver nanoparticles by single particle ICP-MS and isotope dilution. Journal of Analytical Atomic Spectrometry 29: 1265-1272.
Thoma, H., G. Hauschulz, E. Knorr and O. Hutzinger. 1987. Polybrominated dibenzofurans (PBDF) and dibenzodioxins (PBDD) from the pyrolysis of neat brominated diphenylethers, biphenyls and plastic mixtures of these compounds. Chemosphere 16: 277-285.
Thurman, E.M. 2012. Organic geochemistry of natural watersSpringer Science & Business Media.
Tso, C.P. and Y.H. Shih. 2014. The transformation of hexabromocyclododecane using zerovalent iron nanoparticle aggregates. Journal of hazardous materials 277: 76-83.
Urban, N., K. Ernst and S. Bernasconi. 1999. Addition of sulfur to organic matter during early diagenesis of lake sediments. Geochimica et cosmochimica acta 63: 837-853.
Velimirovic, M., H. Chen, Q. Simons and L. Bastiaens. 2012. Reactivity recovery of guar gum coupled mZVI by means of enzymatic breakdown and rinsing. Journal of contaminant hydrology 142: 1-10.
Visser, S. 1964. Oxidation-reduction potentials and capillary activities of humic acids.
Vogel, T.M., C.S. Criddle and P.L. McCarty. 1987. ES&T critical reviews: transformations of halogenated aliphatic compounds. Environmental Science & Technology 21: 722-736.
Volanti, D.P., D. Keyson, L.S. Cavalcante, A.Z. Simoes, M.R. Joya, E. Longo, et al. 2008. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave. J Alloy Compd 459: 537-542.
Wan, C., Y.H. Chen and R. Wei. 1999. Dechlorination of chloromethanes on iron and palladium‐iron bimetallic surface in aqueous systems. Environmental toxicology and chemistry 18: 1091-1096.
Wang, X., C. Chen, Y. Chang and H. Liu. 2009. Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. Journal of Hazardous Materials 161: 815-823.
Weber, F.A., A.F. Hofacker, A. Voegelin and R. Kretzschmar. 2009a. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Environmental science & technology 44: 116-122.
Weber, F.A., A. Voegelin, R. Kaegi and R. Kretzschmar. 2009b. Contaminant mobilization by metallic copper and metal sulphide colloids in flooded soil. Nature Geoscience 2: 267-271.
Weber, F.A., A. Voegelin and R. Kretzschmar. 2009c. Multi-metal contaminant dynamics in temporarily flooded soil under sulfate limitation. Geochimica et Cosmochimica Acta 73: 5513-5527.
Wilkinson, K.J. and J.R. Lead. 2007. Environmental colloids and particles: behaviour, separation and characterisationJohn Wiley & Sons.
Wu, C.L., H.M. Lee, C.T. Kuo, C.H. Chen and S. Gwo. 2008. Cross-sectional scanning photoelectron microscopy and spectroscopy of wurtzite InN/GaN heterojunction: Measurement of “intrinsic” band lineup. Applied Physics Letters 92: 162106.
Xie, L. and C. Shang. 2005. Role of Humic Acid and Quinone Model Compounds in Bromate Reduction by Zerovalent Iron. Environmental Science & Technology 39: 1092-1100.
Yagi, S., H. Nakanishi, T. Ichitsubo and E. Matsubara. 2009. Oxidation-State Control of Nanoparticles Synthesized via Chemical Reduction Using Potential Diagrams. Journal of The Electrochemical Society 156: D321.
Yang, M.X., S. Sarkar, B.E. Bent, S.R. Bare and M.T. Holbrook. 1997. Degradation of multiply-chlorinated hydrocarbons on Cu (100). Langmuir 13: 229-242.
Yu, Y., D. Zhou and F. Wu. 2015. Mechanism and products of the photolysis of hexabromocyclododecane in acetonitrile–water solutions under a UV-C lamp. Chemical Engineering Journal 281: 892-899.
Zhang, X., P. Zhang, Z. Wu, L. Zhang, G. Zeng and C. Zhou. 2013. Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 435: 85-90.
Zhang, Y., S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, et al. 2012. One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing. Rsc Advances 2: 538-545.
Zhou, D., Y. Wu, X. Feng, Y. Chen, Z. Wang, T. Tao, et al. 2014. Photodegradation of hexabromocyclododecane (HBCD) by Fe (III) complexes/H2O2 under simulated sunlight. Environmental Science and Pollution Research 21: 6228-6233.
Zhou, S., S. Chen, Y. Yuan and Q. Lu. 2015. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity. Scientific reports 5.
Zhu, N., H. Luan, S. Yuan, J. Chen, X. Wu and L. Wang. 2010. Effective dechlorination of HCB by nanoscale Cu/Fe particles. Journal of Hazardous Materials 176: 1101-1105.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48778-
dc.description.abstract天然土壤環境在淹水狀態下,因微生物代謝而造成低氧化還原潛勢。在此狀態下,腐植物質如腐植酸也會被還原,且會和一些金屬離子產生交互作用,其中銅離子較容易被還原。為了解還原的環境是否能促使零價銅奈米顆粒 (nanoparticles, NPs)生成,並進一步與持久性有機汙染物反應,新興汙染物六溴環十二烷 (hexabromocyclododecane, HBCD)被選為目標化合物。本篇研究先以硼氫化鈉合成奈米級零價銅 (Cu NPs),Cu NPs移除HBCD之反應速率隨著Cu NPs劑量升高而增加,當Cu NPs劑量為3.5 g/L時反應速率最高,其質量標準化擬一階速率常數為14.4 min-1g-1。Cu NPs移除HBCD之反應速率隨著初始HBCD濃度升高而下降。Cu NPs移除HBCD之反應速率隨溫度增加而上升,並計算出活化能為32.2 kJ/mole,顯示此反應機制為表面控制。Cu NPs移除HBCD之反應速率隨著初始pH值增加而下降,由於pH 4時Cu NPs表面主要為零價銅,而pH上升至9時,Cu NPs表面部分轉化為氧化銅及氫氧化銅而鈍化。此外,也發現Cu NPs對於HBCD的吸附隨著初始pH值上升而增加。另一方面,Cu NPs等電點為8.1,pH值升高時較易聚集,因此也可能降低了反應速率。
為了解還原性腐植酸和二價銅錯合後銅物種的轉化,以硼氫化鈉還原腐植酸後,再以還原性腐植酸與不同的二價銅劑量作用,孵育不同時間之腐植酸-銅。於0.9 g/L腐植酸及175 mmol/kg二價銅中,以X光近邊緣吸收光譜儀觀察銅物種於孵育12小時後,主要為有機酸-銅形式,傅立葉轉換-紅外光譜儀分析顯示1384及1598 cm-1的波峰,表示腐植酸與銅的主要以羧基-銅的化學鍵錯合。而48小時後,X光近邊緣吸收光譜儀分析主要為零價銅。並以掃描式光電子能譜顯微術觀察到空間上腐植酸中有零價銅的分布。單顆粒感應耦合電漿質譜儀量測腐植酸-銅,銅的顆粒大小約為50 nm。腐植酸-銅和HBCD反應24小時後,移除的六溴環十二烷可達到34.5%,並測得溴離子,為還原脫溴的反應,顯示還原性腐植物質與其所還原之零價銅,可移除六溴環十二烷。
zh_TW
dc.description.abstractBecause of flooding and microbial metabolism, humic acid in some natural reduction environments could be reduced and then interact with metal ions; moreover, the copper ion is easily to be reduced. To understand whether a reduced condition can facilitate the formation of zero valent Cu NPs and then interact with persistent organic pollutant (POP), HBCD, one of POP, is chosen as a target compound. First, Cu NPs were synthesized by sodium borohydride. The removal of HBCD by Cu NPs was increased with the Cu NPs dosage increased but with the initial HBCD concentration decreased. The highest rate constant presented in 3.5 g/L Cu NPs, moreover the mass-normalized rate constant was 14.4 min-1g-1. The removal of HBCD was also increased with the temperature increased. The estimated activation energy was about 32.21 kJ/mol, which is considered as surface controlled reaction. The removal of HBCD was decreased with the initial pH increased. However, with pH increased the passivation of Cu NPs such as copper (hydro)oxide was found and then contributed to the increase of HBCD adsorption efficiency. On the other hand, the pHzpc of Cu NPs is 8.1, the Cu NPs would aggregate with the increased pH and then reduce the rate constant.
To understand the transformation of complexes of reduced humic acid and cupric ion, humic acid was chemically reduced by sodium borohydride, and cupric ion was well-mixed with the reduced humic acid (RHA) under different Cu(II) ion dosages and incubation period. The copper species of RHA-Cu were organic acid-copper complexes after the reacting time of 12 hours. Metallic copper was observed for the reacting time of 48 hours in the condition of 0.9 g/L RHA with 175 mmol/kg Cu(II) which were analyzed by X-ray adsorption near edge structure. The spatial distribution of zero valent copper in the humic acid were investigated by scanning photoemission microscopy. There were two peaks at 1384 and 1598 cm-1 owning to the carboxylate vibrations, indicating that the HA complexes with Cu(II) via chemical bonding which were investigated by Fourier transform infrared spectroscopy. The particle size of metallic copper of RHA-Cu was around 50 nm was analyzed by single particle-inductively coupled plasma-mass spectrometry. The removal efficiency of HBCD by RHA-Cu was 34.5% after 24 hours and bromide ions were detected, indicating a reduction and debromination reaction of HBCD. Our results demonstrate the metallic copper can be synthesized by humic substances in a redox condition, which could provide a potential for HBCD removal through this abiotic chemical process.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:09:14Z (GMT). No. of bitstreams: 1
ntu-105-R03623017-1.pdf: 2936187 bytes, checksum: 6d936934136b31c7d6e48a2e816ecefe (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents摘要 I
Abstract II
Tables of contents IV
List of Figures VII
List of tables XII
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1 Introduction of HBCD 3
2.1.1 The characteristics of HBCD 3
2.1.2 The usage of HBCD 3
2.1.3 The distribution and toxicology of HBCD in the environment 4
2.1.3.1 HBCD concentration in the environment 4
2.1.3.2 Bioaccumulation and biomagnifications of HBCD 5
2.1.3.3 The transformation of HBCD 5
2.2 Zero valent copper nanoparticles (NPs) 7
2.2.1 The characteristics of zero valent copper NPs 7
2.2.2 The usage of metallic copper NPs 8
2.3 Formation and reaction of natural metal NPs 9
2.3.1 Abiotic formation processes of natural metal NPs 10
2.3.2. Synthesis of metal NPs by natural organic matters 13
2.3.3 Application of humic-metal complexes 14
2.4 Analytical methodologies for nanoparticle analysis and characterization 15
Chapter 3 Material and methods 18
3.1 Chemicals and standards 18
3.2 Synthesis of copper particles 18
3.3 Synthesis of HA-Cu nanoparticles 19
3.4 Characterization of Cu NPs and RHA-Cu nanoparticles 19
3.4.1 Transmission electron microscope, TEM 19
3.4.2 Field-emission scanning electron microscope, FE-SEM 20
3.4.3 Dynamic light scattering, DLS 20
3.4.4 Brunauer-Emmett-Teuller surface area 21
3.4.5 X-ray diffraction, XRD 21
3.4.6 X-ray absorption near edge structure, XANES 21
3.4.7 Scanning Photoemission Microscopy, SPEM 22
3.4.8 Fourier transform infrared spectroscopy 23
3.4.9 Raman spectroscopy 23
3.4.10 Single particle-inductively coupled plasma-mass spectrometry, SP-ICP-MS 24
3.5 Batch experiments 25
3.5.1 The effects of Cu dosage on the removal of HBCD with copper particles 25
3.5.2 The effect of initial concentration of HBCD on the removal of HBCD with copper particles 26
3.5.3 The effect of temperature on the removal of HBCD with copper particles 26
3.5.4 The effect of initial pH on the removal of HBCD with copper particles 26
3.5.5 The reactivity of HA and HA-Cu complexes 28
3.5.5.1 The batch experiment of HBCD for HA and HA-Cu complexes 28
3.6 Analysis methods of HBCD 28
3.6.1 Extraction method of HBCD in solid and aqueous phase 28
3.6.2 Analytical method of HBCD 29
3.6.3 Anion analysis 29
3.7 HBCD reaction modeling 29
3.7.1 HBCD reaction rate constants 29
3.7.2 Removal efficiency 30
3.7.3 Adsorption ratio and degradation ratio 30
3.7.4 Debromination efficiency 31
3.7.5 Complete debromination efficiency 31
Chapter 4 Result and Discussion 32
4.1 Characterization of copper nanoparticles 32
4.1.1 Size analysis of copper nanoparticles 32
4.1.2 The XRD pattern of copper particles under different pH 35
4.2 Removal of HBCD by copper nanoparticles 37
4.2.1 Effect of dosage on the removal of HBCD by Cu nanoparticles 37
4.2.2 Effect of initial HBCD concentration on the removal of HBCD by Cu nanoparticles 40
4.2.3 Effect of temperature on the removal of HBCD by Cu nanoparticles 42
4.2.4 Effect of pH on the removal of HBCD by Cu nanoparticles 45
4.3 Characterization of RHA-Cu nanoparticles 53
4.4 Single particle inductively coupled plasma mass analysis of RHA-Cu nanoparticles 56
4.5 XANES analysis of RHA-Cu nanoparticles 58
4.6 FT-IR analysis of RHA-Cu nanoparticles 63
4.7 SPEM analysis of RHA-Cu nanoparticles 65
4.8 Removal of HBCD by HA and HA-Cu nanoparticles 69
Chapter 5 Conclusion 77
Reference 79
Appendix 92
dc.language.isoen
dc.title奈米零價銅之合成及其移除六溴環十二烷之研究zh_TW
dc.titleThe synthesis of zero valent copper nanoparticles for hexabromocyclododecane removalen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee賴朝明,連興隆,董瑞安,周佩欣
dc.subject.keyword奈米零價銅,腐植酸,銅錯合物,六溴環十二烷,zh_TW
dc.subject.keywordnanoscale zero valent copper,humic acid,copper complexes,hexabromocyclododecane,en
dc.relation.page100
dc.identifier.doi10.6342/NTU201603723
dc.rights.note有償授權
dc.date.accepted2016-11-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
2.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved