Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48774
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 王亞男,葉開溫 | |
dc.contributor.author | Du-Jhen Lin | en |
dc.contributor.author | 林渡真 | zh_TW |
dc.date.accessioned | 2021-06-15T07:37:50Z | - |
dc.date.available | 2013-11-22 | |
dc.date.copyright | 2012-11-22 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2012-10-15 | |
dc.identifier.citation | 李秉滔 (1995) 中國大百科全書(生物III)。錦繡出版事業股份有限公司。2090-2091。
馬復京、游漢明 (2007) 以林木種子油脂生產生質柴油。林業研究專訊14 (3) : 22-25 陳炳章 (1988) 油桐種籽油脂合成及其在品種類型上的差異。林業科學研究1 (2) :140-148 陳德順、胡大維 (1975) 台灣外來觀賞植物名錄。川流出版社。162-163。 郭倫發、何金祥、王新桂、林春蕊、何成新(2009) 大戟科主要油料植物的開發 利用研究進展。中國油脂34 (10) : 57-61 楊恭毅 (1984) 楊氏園藝植物大名典。中國花卉雜誌社。1695-1697。 顧龔平、錢學射、張衛明、張廣倫(2008) 燃料油植物油桐的利用與栽培。中國 野生植物資源27(6) : 12-15 Buchanan, B. B., W. Gruissen and R.L. Jones (2000) Biochemistry and molecular biology of plants. Rockville, Maryland, American Society of Plant Physiologists. Byfield G.E., R.G. Upchurch. (2007) Effect of Temperature on Delta-9 Stearoyl-ACP and Microsomal Omega-6 Desaturase Gene Expression and Fatty Acid Content in Developing Soybean Seeds. Crop Sci. 47:1698–1704 Chang, S., J. Puryear and J. Cairney (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11: 113-116 Douglas W., James Jr., E. Lim, J. Keller, I. Plooy, Ed Ralston, H.K. Dooner. (1995) Directed tagging of the Arabidopsis fatty acid elongation1 (FAEl) Gene with the Maize transposon activator. Plant Cell.(7)309-319 Drown D.C., K. Harper, E. Frame. (2001) Screening vegetable oil alcohol esters as fuel lubricity enhancers. J Am Oil Chem Soc 78(6):579-584. Durrett T.P, C. Benning, J. Ohlrogge (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 54: 593-607 Dyer, J.M., D.C. Chapital, J.C.W. Kuan, R.T. Mullen, C. Turner, T.A. McKeon and A. B. Pepperman (2002) Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol. 130: 2027-2038 Dyer, J.M., D.C. Chapital, J.C. W. Kuan, H.S. Shepherd, F. Tang and A.B. Pepperman (2004) Production of linolenic acid in yeast cells expressing an omega-3 desaturase from tung (Aleurites fordii). Journal of the American Oil Chem. Soc. 81: 647-651 Dyer, J.M. and R.T. Mullen (2005) Development and potential of genetically 49 engineered oilseeds. Seed Sci. Res. 15: 255-267 Dyer J.M, R.T. Mullen (2008) Engineering plant oils as high-value industrial feedstocks for biorefining: the need for underpinning cell biology research. Physiol Plant 132: 11-22 Falcone DL, J.P. Ogas, C.R. Somerville (2004) Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol. 4: 17 Flors V, Ton J, van Doorn R, Jakab G, Garcia-Agustin P, Mauch-Mani B (2008) Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J. 54: 81-92 Fofanaa B., S. Cloutiera, S. Duguidb, J. Chinga, and C. Rampitscha. (2006) Gene expression of stearoyl-ACP desaturase and delta 12 fatty acid desaturase 2 is modulated during seed. Lipids 41(7):705-712 Gulzar A., A. Jan, A. Marifkhan, M.T. Jan, R.A. Khattak (2007) Influence of nitrogen and sulfur fertilization on quality of canola (Brassica napus L.) under rainfed conditions. J Zhejiang Univ Sci B (10):731-737 Hassan, F. U., A. Manaf and M. Ejaz. (2005) Determinants of oil and fatty acid accumulation in Peanut. Int. J. Agri. Biol. 7 (6) : 895-899 Hilditch, T. P. and A. Mendelowitz. (1951) The component fatty acids and glycerides of tung oil. Jour. Sci. Food Agr. 2:548-556. Hu Y., G. Wu, Y. Cao, Y. Wu, L. Xiao, X. Li, C. Lu (2009) Breeding response of transcript profiling in developing seeds of Brassica napus. BMC Mol. Biol. 10:49 Jackson G.D. (2000) Effects of nitrogen and sulfur on canola yield and nutrient uptake. Agron J. 92(4):644-649. Jadhav A.S., D.C. Taylor, M. Giblin, A.M. Ferrie, S.J. Ambrose, A.R. Ross, K.M. Nelson, L.I. Zaharia, N. Sharma, M. Anderson, P.R. Fobert, S.R. Abrams (2008) Hormonal regulation of oil accumulation in Brassica seeds: Metabolism and biological activity of ABA, 7'-, 8'- and 9'-hydroxy ABA in microspore derived embryos of B. napus. Phytochemistry 69: 2678-2688 Li, Y., F. Beisson, M. Pollard and J. Ohlrogge (2006) Oil content of Arabidopsis seeds: The influence of seed anatomy, light and plant-to-plant variation. Phytochemistry 67:904-915 Loh S.K., S.M. Chew , Y.M. Choo (2006) Oxidative stability and storage behavior of fatty acid methyl esters derived from used palm oil. J Am Oil Chem Soc 83:947-952. Luo, T., S.M. Peng, W. Y. Deng, D. W. Ma, Y. Xu, M. Xiao and F. Chen. (2006) 50 Characterization of a new stearoyl-acyl carrier protein desaturase gene from Jatropha curcas. Biotechnol. Lett. 28: 657–662 Mahajan S., S.K. Konar, D.G.B. Boocock. (2006) Determining the acid number of biodiesel. J Am Oil Chem Soc 83:567-570 Mailer R.J. (1989) Effects of applied sulfur on glucosinolate and oil content in the seeds of rape (Brassica napus L.) and turnip rape (Brassica rapa L.). Aust. J. Agric. Res. 40(3):617-624. Mietkiewska E., E.M. Giblin, S. Wang, D.L. Barton, J. Dirpaul, J.M. Brost, V. Katavic, D.C. Taylor (2004) Seed-Specific Heterologous Expression of a Nasturtium FAE Gene in Arabidopsis Results in a Dramatic Increase in the Proportion of Erucic Acid. Plant Physiol. 136: 2665-2675 Mu J., H. Tan, Q. Zheng, F. Fu, Y. Liang, J. Zhang, X. Yang, T. Wang, K. Chong, X. Wang, J. Zuo (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol. 148:1042-1054 Qi Q., P.A. Rose, G.D. Abrams, D.C. Taylor, S.R. Abrams, A.J. Cutler (1998) (+)-Abscisic acid metabolism, 3-ketoacyl-coenzyme A synthase gene expression, and very-long-chain monounsaturated fatty acid biosynthesis in brassica napus embryos. Plant Physiol. 117: 979-987 Regente M, G.C.Monzon, L.Canal (2008) Phospholipids are present in extracellular fluids of imbibing sunflower seeds and are modulated by hormonal treatments. J. Exp. Bot. 59: 553-562 Ruuska S.A., J. Schwender, J.B. Ohlrogge. (2004) The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol. 136:2700-2709 Sambrook, J. and D. Russell (2001) Molecular cloning: A laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, New York. Shockey J.M., P.K. Dhanoa, T. Dupuy, D.C. Chapital, R.T. Mullen, J.M. Dyer (2005) Cloning, functional analysis, and subcellular localization of two isoforms of NADH:cytochrome b5 reductase from developing seeds of tung (Vernicia fordii). Plant Sci. 169:375-385 Shockey, J. M., S. K. Gidda, D. C. Chapital,J. C. Kuan, P. K. Dhanoa, J. M. Bland,S. J. Rothstein, R. T. Mullen and J. M.Dyer (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18:2294-2313 Subhani A., G.Shabbir., M. Fazil, A. Mahmood, R. Khalid, N.M. Cheema (2003) Role of sulfur in enhancing the oil contents and yield of rapeseed under medium rainfed conditions. Pak. J. Soil Sci. 22(4):50-53. 51 Zou J, G.D. Abrams, D.L. Barton ,D.C. Taylor, M.K. Pomeroy, S.R. Abrams (1995) Induction of Lipid and Oleosin Biosynthesis by (+)-Abscisic Acid and Its Metabolites in Microspore-Derived Embryos of Brassica napus L.cv Reston (Biological Responses in the Presence of 8[prime]-Hydroxyabscisic Acid). Plant Physiol. 108: 563-571 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48774 | - |
dc.description.abstract | 目前各國皆積極發展植物性油脂做為生質柴油,但植物性油脂具有較高之黏性與冷濾點(Cold filter plugging point,CFPP)等缺點不適合完全做為車用燃料,仍需與石化柴油混合使用。油脂性質是由於其脂肪酸成分與比例造成,植物常藉由改變脂肪酸比例來適應外在環境之變化,本論文以千年桐與三年桐做為材料,從分子生物層面探討木本植物種子油脂生合成與環境因子之影響。
首先分析兩種油桐不同發育階段之果實與葉片及成熟種子之油量與脂肪酸組成發現三年桐種子含油率較千年桐多10%,三年桐果實中脂含油量在成熟後期大約為千年桐之1.6 倍,成熟種子主要脂肪酸成分為棕梠酸、硬脂酸、油酸、亞麻油酸、桐油酸,在果實及葉子中雖沒有偵測到桐油酸,但却含有大量C18:3 的次亞麻油酸。再者擴增出三年桐與千年桐相關油脂生合成基因包括酯化的DGAT2與延長碳鏈的FAE1 不飽和酶系統的SAD、FAD2、FAD3、FADX,與還原系統的Cytochrome b5 和Cytochrome b5 reductase。比對兩種油桐各基因胺基酸序列,結果發現序列在兩種植物中相似度非常高,且其基因套數也雷同,因此認為兩油桐之油量與油性差異並非基因型(genotype)有異造成。比較不同發育階段的果實各基因的表現情形,發現大多數基因的表現並無明顯地差異,只有決定桐油酸�次亞麻油酸比例的FADX 與FAD3 在兩種油桐却有顯著的差異。三年桐之FAD3基因表現量隨果實發育增加,但FADX 在果實發育階段則偵測不到其表現,千年桐之FAD3 在果實發育過程其基因表現量維持一定,FADX 在直徑六公分時開始偵測到有表現,脂肪酸分析試驗也僅在成熟種子中偵測到桐油酸。因此決定油桐種子脂肪酸成分是在果實成熟後至種子成熟這段期間之基因表現差異所造成。在不同環境處理下發現,溫度為調控脂肪酸相關基因主要因子。三年桐中脂肪酸相關基因能受較高的環境溫度誘導而增加表現量,反之千年桐則否。此外也分析植物荷爾蒙對於油桐脂肪酸合成基因的影響,除了茉莉酸(Jasmonic acid)可同時誘導兩種油桐的FAD3 表現,大多數的植物賀爾蒙階對兩種油桐的脂肪酸相關基因無明顯的誘導作用。 | zh_TW |
dc.description.abstract | Tung oil is an important feedstock of lubricant and polishes and consisted of special unusual conjugated fatty acid, eleostearic acid. Vernicia fordii (Vf) and
Vernicia montana (Vm) are popular species for oil industry in America and Asia but less discussed on the oil biosynthesis of these trees. My thesis figured out the genetic and physiological difference between Vf and Vm and proposed the crucial factors of quantity and quality of tung oil. The oil amount in the developing seed of Vf is equal to that of Vm , but oil amount in matured seed of Vf is 1.6 fold than that of Vm. Several oil-related genes, such as fatty acid desaturase (FAD) and diacylglycerol transferase (DGAT), displayed higher homology in amino acid sequence and shared the copy number in the genomes between two tung trees. It revealed that the difference of oil character between two tung trees was not caused by the gene function itself. Furthermore, the expression level of FAD3 in developing seed of Vf is higher than in Vm, but that of FADX is in the reverse in Vm. The expression pattern of oil-related genes was not consistent with the fatty acid composition of two tung trees and brought out the complex regulatory network in the oil biosynthesis between two tung trees. The oil-related genes of Vf were elevated under higher ambient temperature condition but not in Vm. Moreover, expression level of oil-related genes in Vf and Vm were not influenced by phytohormones excluding jasmonic acid. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T07:37:50Z (GMT). No. of bitstreams: 1 ntu-99-R96625037-1.pdf: 7474114 bytes, checksum: 43fead298e59a7a53b398cbb592f5809 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審書…………………………………………..…………………………...i
誌謝…………………………………………………………,,,…………….…………ii 目錄………………………………………………………………………...…………iii 圖表目錄………………………………………………………………...……………iv 中文摘要…………………………………………………………..…………………..v 英文摘要………………………………………………………...……………………vi 第一章 前言…………………………………………………………………………1 第一節 植物油脂生合成途徑…………………………………………….……1 第二節 脂肪酸生合成調控機制………….……………………………………2 第三節 油桐與做為生質柴油之潛力……….…………………………………6 第四節 本論文研究方向…………………….………………………………..13 第二章 材料與方法………………………………………………………………..14 第一節 油脂萃取及脂肪酸分析………….…………………………………..14 第二節 油脂相關基因的擴增……………...…………………………………16 第三節 癒合組織之誘導與基因調控處理……...……………………………22 第四節 基因組與基因表達之分析………………...…………………………24 第三章 結果………………………………………………..………………………37 第四章 討論…………………………………………………..……………………43 第五章結論…………………………………………………..……………………47 第六章參考文獻………………………………………………..…………………48 圖表………………………………………………………………..…………………52 附錄…………………………………………………………………..………………81 | |
dc.language.iso | zh-TW | |
dc.title | 三年桐與千年桐油脂生合成基因之分子特性 | zh_TW |
dc.title | Molecular Characterization of Oil-biosynthetic genes in Vernicia fordii and Vernicia montana | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭英倫,柯淳涵,李明仁 | |
dc.subject.keyword | 三年桐,千年桐,油脂生合成基因,桐油酸,脂肪酸去飽和酶, | zh_TW |
dc.subject.keyword | Vernicia fordii,Vernicia montana,Oil-biosynthetic genes,Eleostearic acid,Fatty acid desaturase, | en |
dc.relation.page | 90 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-10-16 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
Appears in Collections: | 森林環境暨資源學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-99-1.pdf Restricted Access | 7.3 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.