請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48765完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫雅麗 | |
| dc.contributor.author | Tsun-Jui Wen | en |
| dc.contributor.author | 温存睿 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:12:48Z | - |
| dc.date.available | 2013-09-21 | |
| dc.date.copyright | 2010-09-21 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-09-13 | |
| dc.identifier.citation | [1] Corrado de Fabritiis, Roberto Ragona, and Gaetano Valenti, “Traffic Estimation And Prediction Based On Real Time Floating Car Data”, 11th International IEEE Conference on Intelligent Transportation Systems, 2008
[2] Jungkeun Yoon, Brian Noble, and Mingyan Liu, “Surface Street Traffic Estimation”, Proceedings of the 5th International Conference on Mobile Systems, Applications and Services, 2007 [3] S. Sananmongkhonchai, P. Tangamchit, and P. Pongpaibool, “Road Traffic Estimation from Multiple GPS Data using Incremental Weighted Update”, 8th International Conference on ITS Telecommunications, 2008 [4] Ling-Yin Wei, Wen-Chih Peng, Chun-Shuo Lin, and Chen-Hen Jung, “Exploring Spatio-Temporal Features for Traffic Estimation on Road Networks”, 11th International Symposium on Spatial and Temporal Databases, 2009 [5] S. Poomrittigul, S. Pan-ngum , K. Phiu-Nual, W. Pattara-atikom, and P. Pomgpaibool, “Mean Travel Speed Estimation using GPS Data without ID Number on Inner City Road”, 8th International Conference on ITS Telecommunications, 2008 [6] CRAWDAD – http://crawdad.cs.dartmouth.edu/meta.php?name=epfl/mobility [7] Y. Wang, P. Beullens, H. Liu, D. Brown, T. Thornton, and R. Proud, “A Practical Intelligent Navigation System based on Travel Speed Prediction”, 11th International IEEE Conference on Intelligent Transportation Systems, 2008 [8] Google Maps – http://maps.google.com.tw/ [9] Support Vector Machine – http://en.wikipedia.org/wiki/Support_vector_machine [10] Weka – http://www.cs.waikato.ac.nz/ml/weka/ [11] E.W. Dijkstra, “A note on two problems in connexion with graphs”, Numerische Mathematik, 1(1):269-271, 1959 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48765 | - |
| dc.description.abstract | 交通擁塞在市區而言是個重要的問題,它會使得駕駛們浪費龐大的時間與金錢。近年來裝載有GPS定位裝置的車輛逐漸普及,而這些車輛的位置資訊對於估計複雜的市區道路網絡的交通狀況相當有用,根據準確的交通狀況估計,我們可以提供適當的行駛路徑給駕駛們,便能夠避開擁塞路段,減少時間與金錢的浪費。
這篇論文中,我們利用行駛於市區道路網絡中的車輛之GPS位置來估計路段的交通狀況,我們提出了一個速度模式模型來描述路段上的交通狀況,並且也提出一個分類基礎的路徑指示模型,透過機器學習技術來學習歷史交通狀況的演變。路徑指示模型將能夠依據駕駛所處的交通狀況及它由歷史資料所學習到的經驗來決定適當的路徑提供給駕駛們參考。 | zh_TW |
| dc.description.abstract | Traffic congestion is an important problem in city. It could lead a significant waste of money and time. In recent years, cars equipped with GPS devices become widespread and the location information of those cars could be very useful to estimate traffic condition in the complex city road network. According to the accurate traffic condition estimation, we can provide appropriate route guidance to road drivers and they can avoid the congestion.
In this thesis, we use the GPS coordinates of cars driving on the city road network to estimate the traffic condition of road segments. We propose a speed pattern model to describe traffic condition as the travel speed pattern. And we propose a classification-based route guidance model by learning the historic traffic data using machine learning technique. The route guidance model could provide route guidance to drivers according to current traffic condition and how traffic condition would change by the experience learned from historic traffic data. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:12:48Z (GMT). No. of bitstreams: 1 ntu-99-R97725020-1.pdf: 5273189 bytes, checksum: e9702ccd685e96291d5fdb527a5aba82 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 I
論文摘要 II THESIS ABSTRACT III Contents IV Figure List VI Table List VII Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Goals and Issues 3 Chapter 2 Related Works 9 2.1 Single and Multiple Mobile Probes 9 2.2 Sparse Dataset Problem in City 9 2.3 High Traffic Dynamics 10 2.4 Snapshot Routing 11 Chapter 3 Methodology 12 3.1 Overview 12 3.2 San Francisco Dataset 13 3.3 Extract Traffic Information 14 3.4 Estimate Speed Pattern 16 3.4.2 Definition and Parameters of 2SPEED 16 3.4.3 Procedure of Speed Pattern Model Estimation 18 3.4.4 Sparse Data Solution 22 3.5 Calculate Route Travel Time 25 3.6 Route Guidance Model Learning Process 27 Chapter 4 Experiments and Results 31 4.1 Experiment Area and Observe Time 31 4.2 Sparse data Solution 32 4.3 Route Guidance Model Evaluation 33 4.4 Route Guidance Model vs. Snapshot Routing 35 4.5 2SPEED vs. MTS 36 4.6 Guidance accuracy vs. Data Sparse Level 36 4.7 Guidance accuracy vs. amount of training data 38 Chapter 5 Conclusions 40 Chapter 6 Future Works 41 Reference 42 | |
| dc.language.iso | en | |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | GPS | zh_TW |
| dc.subject | 速度模式估計 | zh_TW |
| dc.subject | 路徑指示 | zh_TW |
| dc.subject | route guidance | en |
| dc.subject | machine learning | en |
| dc.subject | GPS | en |
| dc.subject | speed pattern estimation | en |
| dc.title | 市區道路網絡中以全球定位系統資料為基礎之速度模式預測與路徑指引 | zh_TW |
| dc.title | GPS Data Based Speed Pattern Estimation and Route Guidance in City Road Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳孟彰,蔡志宏,呂俊賢 | |
| dc.subject.keyword | GPS,速度模式估計,路徑指示,機器學習, | zh_TW |
| dc.subject.keyword | GPS,speed pattern estimation,route guidance,machine learning, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-09-14 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 5.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
