Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48762
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋延齡(Yen-Ling Song)
dc.contributor.authorChing-Yu Lien
dc.contributor.author李靖宇zh_TW
dc.date.accessioned2021-06-15T07:12:38Z-
dc.date.available2015-09-21
dc.date.copyright2010-09-21
dc.date.issued2010
dc.date.submitted2010-09-15
dc.identifier.citationBabcock DT, Brock AR, Fish GS, Wang Y, Perrin L, Krasnow MA, Galko MJ. Circulating blood cells function as a surveillance system for damaged tissue in Drosophila larvae. Proc Natl Acad Sci U S A 2008; 105: 10017-22.
Bachère E, Gueguen Y, Gonzalez M, de Lorgeril J, Garnier J, Romestand B. Insights into the antimicrobial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol Rev 2004; 198: 149-68.
Baroni A, Donnarumma G, Paoletti I, Longanesi-Cattani I, Bifulco K, Tufano MA, Carriero MV. Antimicrobial human beta-defensin-2 stimulates migration, proliferation and tube formation of human umbilical vein endothelial cells. Peptides 2009; 30:267-72.
Belz GT, Masson F. Interleukin-2 tickles T cell memory. Immunity 2010; 29:7-9.
Beschin A, Bilej M, Torreele E, De Baetselier P. On the existence of cytokines in invertebrates. Cell Mol Life Sci 2001; 58:801-14.
Beschin A., Müller WEG. Invertebrate cytokines and the phylogeny of immunity. PMSB 2004
Binz P., Abdi F., Affolter M., Allard L., Barblan J., Bhardwaj S., Bienvenut W., Bulet P., Burgess J., Carrette O., Corthals G., Delalande F., Diemer H., Favreau P., Giuliano E., Gueguen Y., Guillaume E., Hahner S., Man P., Michalet S., Neri D., Noukakis D., Palagi P., Paroutaud P., Pimenta D. C., Quadroni M., Resemann A., Richert S., Rybak J., Sanchez J., Scherl A., Scheurer S., Hufnagel U. S., Siethoff C., Suckau D., Dorsselaer A. v., Redeker W. W., Walter N. Stocklin R. Proteomics application exercise of the Swiss Proteomics Society: report of the SPS'02 session. Proteomics. 2003; 3: 1562-6.
Boman HG, Steiner H. Humoral immunity in Cecropia pupae. Curr Top Microbiol Immunol 1981; 94-95: 75-91.
Braff MH, Hawkins MA, Di Nardo A, Lopez-Garcia B, Howell MD, Wong C, Lin K, Streib JE, Dorschner R, Leung DY, Gallo RL. Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities. J Immunol 2005; 174: 4271-8.
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science 2004; 303: 1532–5.
Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005; 3: 238-50.
Chen MY, Hu KY, Huang CC, Song YL. More than one type of transglutaminase in invertebrates? A second type of transglutaminase is involved in shrimp coagulation. Dev Comp Immunol 2005; 29: 1003-16.
Chia TJ, Wu YC, Chen JY, Chi SC. Antimicrobial peptides (AMP) with antiviral activity against fish nodavirus. Fish Shellfish Immunol. 2010; 28: 434-9.
Chiou TT, Lu JK, Wu JL, Chen TT, Ko CF, Chen JC. Expression and characterisation of tiger shrimp Penaeus monodon penaeidin (mo-penaeidin) in various tissues, during early embryonic development and moulting stages. Dev Comp Immunol 2007; 31: 132-42.
Chiou TT, Wu JL, Chen TT, Lu JK. Molecular cloning and characterization of cDNA of penaeidin-like antimicrobial peptide from tiger shrimp (Penaeus monodon). Mar Biotechnol (NY) 2005; 7: 119–27.
Chorny A, Anderson P, Gonzalez-Rey E, Delgado M. Ghrelin protects against experimental sepsis by inhibiting high-mobility group box 1 release and by killing bacteria. J Immunol 2008; 180: 8369-77.
Chuang KH, Ho SH, Song YL. Cloning and expression analysis of heat shock cognate 70 gene promoter in tiger shrimp (Penaeus monodon). Gene 2007 ; 405: 10-8.
Cogen AL, Yamasaki K, Sanchez KM, Dorschner RA, Lai Y, MacLeod DT, Torpey JW, Otto M, Nizet V, Kim JE, Gallo RL. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol. 2010a; 130: 192-200.
Cogen AL, Yamasaki K, Muto J, Sanchez KM, Crotty Alexander L, Tanios J, Lai Y, Kim JE, Nizet V, Gallo RL. Staphylococcus epidermidis antimicrobial δ-toxin (phenol-soluble modulin-gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus. PLoS One. 2010b 5; 5: e8557.
Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL, Tomchuck SL, Honer zu Bentrup K, Danka ES, Henkle SL, Scandurro AB. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci U S A 2009; 106: 3806-11.
Cuthbertson BJ, Büllesbach EE, Fievet J, Bachère E. Gross. PS. A new class (penaeidin class 4) of antimicrobial peptides from the Atlantic white shrimp (Litopenaeus setiferus) exhibits target specificity and an independent proline-rich-domain function. Biochem J 2004; 381: 79-86.
Cuthbertson BJ, Büllesbach EE, Gross PS. Discovery of synthetic penaeidin activity against antibiotic-resistant fungi. Chem Biol Drug Des 2006; 68: 120–7.
Cuthbertson BJ, Yang Y, Bachère E, Büllesbach EE, Gross PS, Aumelas A. Solution structure of synthetic penaeidin-4 with structural and functional comparisons with penaeidin-3. J Biol Chem 2005; 280: 16009–18.
Dangel O, Mergia E, Karlisch K, Groneberg D, Koesling D, Friebe A. NO-sensitive guanylyl cyclase is the only NO receptor mediating platelet inhibition. J Thromb Haemost 2010; 8: 1343-52.
Defilippi P, Olivo C, Venturino M, Dolce L, Silengo L, Tarone G. Actin cytoskeleton organization in response to integrin-mediated adhesion. Microsc Res Tech 1999; 1: 67-78.
De Smet K, Contreras R. Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett. 2005; 27: 1337-47.
Denzel A, Maus UA, Rodriguez Gomez M, Moll C, Niedermeier M, Winter C, Maus R, Hollingshead S, Briles DE, Kunz-Schughart LA, Talke Y, Mack M. Basophils enhance immunological memory responses Nat Immunol 2008; 9: 733-42.
Destoumieux D, Bulet P, Loew D, Dorsselaer AV, Rodriguez J, Bachère E. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 1997; 272: 28398–406.
Destoumieux D, Bulet P, Strub JM, Van Dorsselaer A, Bachère E. Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp. Eur J Biochem. 1999; 266: 335-46.
Destoumieux D, Munõz M, Cosseau C, Rodriguez J, Bulet P, Comps M, Bachère E. Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. J Cell Sci 2000; 113: 461–9.
Dugan AS, Maginnis MS, Jordan JA, Gasparovic ML, Manley K, Page R, Williams G, Porter E, O'Hara BA, Atwood WJ. Human alpha-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J Biol Chem 2008; 283: 31125-32.
Filippin LI, Moreira AJ, Marroni NP, Xavier RM. Nitric oxide and repair of skeletal muscle injury. Nitric Oxide 2009; 21: 157-63.
Fonseca JE, Santos MJ, Canhão H, Choy E. Interleukin-6 as a key player in systemic inflammation and joint destruction. Autoimmun Rev 2009; 8: 538-42.
Franceschi C, Cossarizza A, Monti D, Ottaviani E. Cytotoxicty and immunocyte markers in cells from the freshwater Planorbarius corneus (L.) (Gastropoda pulmonata) implication on the evolution of natural killer cells. Eur J Immunol 1991; 21:489–93.
Fritz JH, Girardin SE, Philpott DJ. Innate immune defense through RNA interference. Sci STKE. 2006; 339: pe27.
Galko MJ, Krasnow MA. Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol 2004; 2: E239.
Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther 2006; 8 Suppl2: S3.
Heng L, Wang L. On the ultrastructure and classification of the hemocytes of penaeid shrimp, Penaeus vannamei (Crustacea, Decapoda) Chinese Journal of Oceanology and Limnology 1998; 16: 333-8.
Ho SH, Chao YC, Tsao HW, Sakai M, Chou HN, Song YL. Molecular cloning and recombinant expression of tiger shrimp Penaeus monodon penaeidin. Fish Pathology 2004; 39: 15-23.
Ho SH, Song YL. Cloning of penaeidin gene promoter in tiger shrimp (Penaeus monodon). Fish Shellfish Immunol. 2009; 27: 73-7.
Hoyer KK, Dooms H, Barron L, Abbas AK. Interleukin-2 in the development and control of inflammatory disease. Immunol Rev 2008; 226:19-28.
Hsiao CY, Song YL. A long form of shrimp astakine transcript: molecular cloning, characterization and functional elucidation in promoting hematopoiesis. Fish Shellfish Immunol 2010;28: 77-86.
Huang CC, Sritunyalucksana K, Söderhäll K, Song YL. Molecular cloning and characterization of tiger shrimp (Penaeus monodon) transglutaminase. Dev Comp Immunol 2004; 28: 279-94.
Humphries JE, Yoshino TP. Cellular receptors and signal transduction in molluscan hemocytes: connections with the innate immune system of vertebrates. Integr Comp Biol 2003; 43: 305-12.
Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110: 673-87.
Inada M, Mekata T, Sudhakaran R, Okugawa S, Kono T, El Asely AM, Linh NT, Yoshida T, Sakai M, Yui T, Itami T. Molecular cloning and characterization of the nitric oxide synthase gene from kuruma shrimp, Marsupenaeus japonicus. Fish Shellfish Immunol 2010; 28:701-11.
Janes KA, Gaudet S, Albeck JG, Nielsen UB, Lauffenburger DA, Sorger PK. The response of human epithelial cells to TNF involves an inducible autocrine cascade. Cell 2006; 24: 1225-39.
Jiravanichpaisal P, Puanglarp N, Petkon S, Donnuea S, Söderhäll I, Söderhäll K. Expression of immune-related genes in larval stages of the giant tiger shrimp, Penaeus monodon. Fish Shellfish Immunol 2007; 23: 815-24.
Johnsen L, Fimland G, Nissen-Meyer J. The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J Biol Chem 2005; 280: 9243-50.
Johnston LA, Yoshino TP. Larval Schistosoma mansoni excretory-secretory glycoproteins (ESPs) bind to hemocytes of Biomphalaria glabrata (Gastropoda) via surface carbohydrate binding receptors. J Parasitol 2001; 87: 786-93.
Kandler K, Shaykhiev R, Kleemann P, Klescz F, Lohoff M, Vogelmeier C, Bals R. The antimicrobial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. Int Immunol 2006; 18: 1729-36.
Kang C, Xue J, Liu N, Zhao X, Wang J. Characterization and expression of a new subfamily member of penaeidin antimicrobial peptides (penaeidin 5). Mol Immunol 2007; 44: 1535-43.
Kinashi T. Intracellular signalling controlling integrin activation in lymphocytes. Nat Rev Immunol. 2005 Jul;5(7):546-59.
Koczulla R, von Degenfeld G, Kupatt C, Krötz F, Zahler S, Gloe T, Issbrücker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 2003; 111: 1665-72.
Krishnan P, Gireesh-Babu P, Rajendran KV, Chaudhari A. RNA interference-based therapeutics for shrimp viral diseases. Dis Aquat Organ. 2009; 9: 263-72.
Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 2009; 30: 131-41.
Lee YK, Soh BS, Wu JH. Quantitative assessment of phagocytic activity of hemocytes in the prawn, Penaeus merguiensis, by flow cytometric analysis. Cytometry 2001; 43: 82-5.
Leu JH, Chang CC, Wu JL, Hsu CW, Hirono I, Aoki T, Juan HF, Lo CF, Kou GH, Huang HC. Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected Penaeus monodon. BMC Genomics 2007; 8: 120
Li CY, Yan HY, Song YL. Tiger shrimp (Penaeus monodon) penaeidin possesses cytokine features to promote integrin-mediated granulocyte and semi-granulocyte adhesion. Fish Shellfish Immunol 2010; 28: 1-9.
Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006; 24: 99–146.
Li L, Wang J, Zhao X, Kang C, Liu N, Xiang J, Li F, Sueda S, Kondo H. High level expression, purification, and characterization of the shrimp antimicrobial peptide, Ch-penaeidin, in Pichia pastoris. Protein Expr Purif 2005; 39: 144-51.
Luders T, Birkemo GA, Fimland G, Nissen-Meyer J, Nes IF. Strong synergy between a eukaryotic antimicrobial peptide and bacteriocins from lacticacid bacteria. Appl Environ Microbiol 2003; 69:1797–9.
Mekata T, Sudhakaran R, Okugawa S, Inada M, Kono T, Sakai M, Itami T. A novel gene of tumor necrosis factor ligand superfamily from kuruma shrimp, Marsupenaeus japonicus. Fish Shellfish Immunol 2010; 28: 571-8.
Morales J, Chiu H, Oo T, Plaza R, Hoskins S, Govind S. Biogenesis, structure, and immune-suppressive effects of virus-like particles of a Drosophila parasitoid, Leptopilina victoriae. J Insect Physiol 2005; 51: 181-95.
Muñoz M, Vandenbulcke F, Garnier J, Gueguen Y, Bulet P, Saulnier D, Bachère E. Involvement of penaeidins in defense reactions of the shrimp Litopenaeus stylirostris to a pathogenic vibrio. Cell Mol Life Sci. 2004; 61: 961-72.
Muñoz M, Vandenbulcke F, Gueguen Y, Bachère E. Expression of penaeidin antimicrobial peptides in early larval stages of the shrimp Penaeus vannamei. Dev Comp Immunol. 2003; 27: 283-9.
Muñoz M, Vandenbulcke F, Saulnier D, Bachère E. Expression and distribution of penaeidin antimicrobial peptides are regulated by haemocyte reactions in microbial challenged shrimp. Eur J Biochem. 2002; 269: 2678-89.
Niyonsaba F, Ushio H, Hara M, Yokoi H, Tominaga M, Takamori K, Kajiwara N, Saito H, Nagaoka I, Ogawa H, Okumura K. Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J Immunol 2010; 184:3526-34.
O'Leary NA, Gross PS. Genomic structure and transcriptional regulation of the penaeidin gene family from Litopenaeus vannamei. Gene. 2006; 12:75-83.
Ottaviani E, Malagoli D, Franchini A. Invertebrate humoral factors: cytokines as mediators of cell survival. Prog Mol Subcell Biol 2004; 34:1-25.
Padhi A, Verghese B, Otta S, Varghese B, Ramu K. Adaptive evolution after duplication of penaeidin antimicrobial peptides. Fish Shellfish Immunol 2007; 23: 553-66.
Papanicolaou DA, Vgontzas AN. nterleukin-6: the endocrine cytokine. J Clin Endocrinol Metab 2000; 85:1331-3.
Parsons CJ, Takashima M, Rippe RA. Molecular mechanisms of hepatic fibrogenesis. J Gastroenterol Hepatol 2007; 22: S79–84.
Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog 2007; 3: e26.
Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. J Biol Chem. 2000; 21:21785-8.
Rada B, Leto TL. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol. 2008; 15: 164-87.
Reddy KVR, Yedery RD, Aranha CC. Antimicrobial peptide: Premises and promises. Int J Antimicrob Agents 2004; 24: 536–47.
Robbins M, Judge A, MacLachlan I. siRNA and innate immunity. Oligonucleotides 2009; 19:89-102.
Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol 2010; 28: 321-42.
Rojtinnakorn J, Hirono I, Itami T, Takahashi Y, Aoki T. Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach. Fish Shellfish Immunol 2002; 13: 69–83.
Rowley AF, Powell A. Invertebrate immune systems specific, quasi-specific, or nonspecific? J Immunol 2007; 179:7209–14.
Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697-715.
Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat immunol 2005; 6: 1191-7.
Shaykhiev R, Beisswenger C, Kändler K, Senske J, Püchner A, Damm T, Behr J, Bals R. Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am J Physiol Lung Cell Mol Physiol 2005; 289: L842-8.
Shi HZ. Eosinophils function as antigen-presenting cells. J Leukoc Biol 2004; 76: 520-7.
Song YL, Yu CI, Lien TW, Huang CC, Lin MN. Haemolymph parameters of Pacific white shrimp (Litopenaeus vannamei) infected with Taura syndrome virus. Fish Shellfish Immunol 2003; 14: 317-31.
Srinivasulu B, Syvitski R, Seo JK, Mattatall NR, Knickle LC, Douglas SE. Expression, purification and structural characterization of recombinant hepcidin, an antimicrobial peptide identified in Japanese flounder, Paralichthys olivaceus. Protein Expr Purif 2008; 61: 36-44.
Sung HH, Chang HJ, Her CH, Chang JC, Song YL. Phenoloxidase activity of hemocytes derived from Penaeus monodon and Macrobrachium rosenbergii. J Invertebr Pathol 1998; 71: 26-33.
Sung HH, Sun R. Use of monoclonal antibodies to classify hemocyte subpopulations of tiger shrimp (Penaeus monodon). J Crust Biol 2002; 22: 337-44.
Sung HH, Wu PY, Song YL. Characterisation of monoclonal antibodies to haemocyte subpopulations of tiger shrimp (Penaeus monodon): immunochemical differentiation of three major haemocyte types. Fish Shellfish Immunol 1999; 9: 167-79.
Supungul P, Klinbunga S, Pichyangkura R, Hirono I, Aoki T, Tassanakajon A. Antimicrobial peptides discovered in the black tiger shrimp Penaeus monodon using the EST approach. Dis Aquat Org 2004; 61: 123–35.
Tanji T, Hu X, Weber AN, Ip YT. Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Mol Cell Biol. 2007; 27: 4578-88.
Tanji T, Ip YT. Regulators of the Toll and Imd pathways in the Drosophila innate immune response. Trends Immunol. 2005; 26: 193-8.
Tassanakajon A, Amparyup P, Somboonwiwat K, Supungul P. Cationic Antimicrobial Peptides in Penaeid Shrimp. Mar Biotechnol (NY) 2010; [Epub ahead of print]
Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol 2005; 23:901-44.
Terahara K, Takahashi KG, Mori K. Pacific oyster hemocytes undergo apoptosis following cell-adhesion mediated by integrin-like molecules. Comp Biochem Physiol A Mol Integr Physiol. 2005; 141:215-22.
Todorovicç V, Chen CC, Hay N, Lau LF. The matrix protein CCN1 (CYR61) induces apoptosis in fibroblasts. J Cell Biol. 2005; 7: 559-68.
Toumi H, F'guyer S, Best TM. The role of neutrophils in injury and repair following muscle stretch. J Anat 2006; 208: 459–70.
Tran KT, Lamb P, Deng JS. Matrikines and matricryptins: Implications for cutaneous cancers and skin repair. J Dermatol Sci 2005; 40: 11-20.
van't Hof W, Veerman EC, Helmerhorst EJ, Amerongen AV. Antimicrobial peptides: properties and applicability. Biol Chem 2001; 382: 597-619.
Wang Z, Wang G. APD: the Antimicrobial Peptide Database. Nucleic Acids Research 2004; 32: D590-2.
Weber G, Chamorro CI, Granath F, Liljegren A, Zreika S, Saidak Z, Sandstedt B, Rotstein S, Mentaverri R, Sánchez F, Pivarcsi A, Ståhle M Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer. Breast Cancer Res 2009;11: R6.
Whiteley W, Jackson C, Lewis S, Lowe G, Rumley A, Sandercock P, Wardlaw J, Dennis M, Sudlow C. Inflammatory markers and poor outcome after stroke: a prospective cohort study and systematic review of interleukin-6. PLoS Med 2009; 6:e1000145.
Xu J, Han F, Zhang X. Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antiviral Res 2007; 73: 126-31.
Yan H, Hancock RE. Synergistic interactions between mammalian antimicrobial defense peptides. Antimicrob Agents Chemother 2001; 45: 1558–60.
Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schro‥der JM, Wang JM, Howard OM, Oppenheim JJ. Beta-defensins: Linking innate and adaptive immunity through dendritic and T cell CCR6. Science 1999; 286:525–8.
Yang Y., Poncet J., Garnier J., Zatylny C., Bachère E. Aumelas A. Solution structure of the recombinant penaeidin-3, a shrimp antimicrobial peptide. J Biol Chem. 2003; 278: 36859-67.
Yao CL, Ji PF, Wang ZY, Li FH, Xiang JH. Molecular cloning and expression of NOS in shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 2010; 28: 453-60.
Yodmuang S, Tirasophon W, Roshorm Y, Chinnirunvong W, Panyim S. YHV-protease dsRNA inhibits YHV replication in Penaeus monodon and prevents mortality. Biochem Biophys Res Commun. 2006; 341: 351-6.
Yoshimura A, Muto G. TGF-beta Function in Immune Suppression. Curr Top Microbiol Immunol 2010 [Epub ahead of print].
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415: 389-95.
Zhang ZF, Shao M, Kang KH. Classification of haematopoietic cells and haemocytes in Chinese prawn Fenneropenaeus chinensis. Fish Shellfish Immunol 2006; 21: 159-69.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48762-
dc.description.abstract對蝦素(penaeidin)是蝦類的一種抗微生物肽,分子量介於5.5~6.6 kDa,等電點(pI)為9.1~9.8,由N端脯氨酸豐富區域(proline-rich domain, PRD)與C端半胱氨酸豐富區域(cysteine-rich domain, CRD)所構成,表現並儲存於顆粒型血球中。對蝦素可抑制格蘭氏陽性細菌及絲狀真菌生長,但抑制格蘭氏陰性細菌及酵母菌的效果較差甚或沒有抗菌性。草蝦胚胎發育至1-4個細胞期即表現對蝦素,成蝦在蛻殼前 (premoult)對蝦素表現量最低,蛻殼後對蝦素表現量逐漸上升,蛻殼間(intermoult)表現量最高;又對蝦素可與幾丁質結合,顯示對蝦素與蛻殼有關,是蝦子成長的指標之ㄧ。
本研究分兩部分:首先利用序列專一性小段干擾RNA (short-interfering RNA, siRNA)剔減(knockdown)初代培養血球細胞的對蝦素,証明對蝦素是一種細胞激素(cytokine);進一步剔減活蝦體內對蝦素,証明對蝦素具促發炎細胞激素(pro-inflammatory cytokine)特性,經自分泌(autocrine)方式促進發炎反應。
離體研究中,以序列專一性、小段干擾RNA剔減初代培養血球的對蝦素後,發現血球吸附的相對數比對照組少20 %。在剔減對蝦素的血球培養液中補充重組對蝦素或化學合成PRD,都可恢復吸附血球的相對數目,但CRD則無影響。由Q-PCR檢測剔減對蝦素後10個與細胞吸附相關的基因表現,發現其中3個基因的表現顯著改變。整合素-β (integrin-β)與膠原蛋白(collagen)的表現分別下降91%與64%,而膠原蛋白酶(collagenase) 的表現則增加395%;添加化學合成對蝦素於被剔減血球中,上述3個基因表現轉趨常態。添加RGDS (同膠原蛋白分子內一小段結合區塊序列,可作為配體與整合素結合)於血球培養液,發現血球減少吸附的程度與對蝦素剔減後血球減少吸附的程度相若;但添加RGES (RGDS的無活性類似物)則無此效應,故推論對蝦素調控整合素的表現進而影響血球吸附。上述結果顯示對蝦素或對蝦素分子中的PRD具細胞激素性質,可促進血球吸附,CRD則否;對蝦素可調控減少膠原蛋白酶表現以保存膠原蛋白,再促進膠原蛋白和整合素表現、增加彼此結合,進而促進血球吸附。
由於整合素是細胞遷移的重要分子之一,故推測對蝦素可能參與發炎反應,本研究第二部分從活體切創引起的發炎反應中,探討對蝦素在其中的功能。
首先建立活體剔減對蝦素之技術:蝦子注射對蝦素序列專一性siRNA後再切創,Q-PCR和ELISA皆顯示剔減技術成功。即相較於未切創蝦(UT),Q-PCR測量到切創後2小時傷口組織對蝦素表現量比UT顯著增加到1173%,剔減後則顯著減為446%;週邊循環血球的對蝦素表現量比UT顯著降為76%,剔減後再顯著降為32%;用ELISA測對蝦素濃度亦呈現相同變化。利用H&E染色並以影像分析計算剔減蝦與未剔減蝦的傷口組織單位面積內之總血球數目,結果顯示剔減蝦之傷口組織內總血球數顯著較少,添加重組對蝦素或化學合成PRD於傷口可恢復剔減所造成總血球數減少的現象,但CRD無此效果;顯示對蝦素或其PRD具趨化血球、集中傷口組織的活性。由於Q-PCR測得的整合素表現量隨對蝦素表現量而同步增減,因此推測血球可能藉由整合素遷移至傷口組織。利用兔抗PRD抗體可專一性的辨識對蝦素表現顆粒球;分別進行流式細胞測量(Flow Cytometry)以及免疫組織化學染色(immunohistochemistry, IHC),發現雖然切創蝦和未切創蝦其單位體積血淋巴液中的總血球數目無顯著改變,每顆血球中平均對蝦素的表現量也未改變,但切創蝦較之未切創蝦血淋巴液中表現對蝦素的顆粒球佔全顆粒球的比例卻減少(86%減為62%),呼應前述Q-PCR測量週邊循環血球中所顯示的切創蝦相較於未切創蝦對蝦素表現量顯著減少(76%)。上述兩項分析結果一致都指向因切創使血淋巴液中對蝦素表現顆粒球數目顯著減少;已知血淋巴液中顆粒球約佔全血球8~14%,但免疫組織化學染色卻顯示切創蝦傷口組織中表現對蝦素的顆粒球佔全血球的80%,因而推測血淋巴液中消失的對蝦素表現顆粒球出現在傷口組織。剔減後切創蝦傷口組織中對蝦素表現顆粒球顯著減少,添加化學合成PRD於傷口處可恢復剔減所造成對蝦素表現顆粒球減少的現象,並且具有劑量依存(dose dependent)的特性,故推論對蝦素或其PRD可作為促發炎反應細胞激素,並以自分泌的方式趨化對蝦素表現顆粒球至傷口組織;對蝦素與整合素的表現在活體研究中亦呈現一致性,故推測對蝦素表現顆粒球依靠整合素進行細胞遷移往創傷組織移動。
總結,對蝦素已知是一種抗微生物肽和細胞激素,對蝦素分子或其PRD尚具有促發炎反應細胞激素的特性,以自分泌作用趨化更多表現對蝦素的顆粒球,移往傷口部位,有利於創傷組織修補。
zh_TW
dc.description.abstractPenaeidins are shrimp-specific anti-microbial peptides (AMPs) with molecular weight of 5.6~6.6 and pI of 9.1~9.8. Two domains could be distinguished from the amino acids composition of penaeidins and these are the N-terminal proline-rich domain (PRD) and the C-terminal cysteine-rich domain (CRD). Granulocytes are the major cell type that express and store penaeidins. The major targets of penaeidins are gram-positive bacteria and filamentous fungi; gram-negative bacteria and yeast are less targeted. Expression of tiger shrimp (Penaeus monodon) penaeidin fluctuates during developmental and moulting stages. Penaeidin could be detected as early as the 1~4 cells embryo. In adult, penaeidin reaches the highest level during the inter-molting stage, drops to the lowest level in the premoult stage and then gradually increases until the next moulting cycle. Moreover, direct binding of penaeidin and chitin indicates the correlation between penaeidin and shrimp growth.
There are two parts in this research. First, applying siRNA (short-interfering RNA) to knockdown of penaeidin in the hemocytic primary culture of tiger shrimp and to prove that penaeidin could also function as a cytokine. Second, to knockdown penaeidin in vivo to prove its pro-inflammation cytokine function and autocrine feature.
Shrimp hemocytes in primary culture were transfected with penaeidin-specific siRNA and a concomitant 20% reduction in adhesive hemocytes compared with mock-transfected cells was observed. Addition of biosynthesized or chemically synthesized penaeidin or PRD to the culture medium of penaeidin knockdown hemocytes led to a full recovery in the number of adhesive hemocytes. The effect of penaeidin knockdown on the expression of 10 tiger shrimp cell adhesion-associated molecules were examined using real-time Q-PCR. Results demonstrated 91% and 64% decreases in the expression of integrin-β and collagen, respectively, and 396% increase in the expression of collagenase. The addition of chemically synthesized penaeidin after penaeidin knockddown hemocytes normalized the expression of these three genes. The addition of the integrin-β ligand competitor RGDS to mock-transfected hemocytes decreased the number of adhesive hemocytes similar to penaeidin knockdown. In conclusion, PRD of penaeidin possesses an integrin-β-mediated cytokine feature that promotes shrimp granulocyte and semi-granulocyte adhesion but not CRD. Penaeidin regulates hemocyte adhesion through the regulation of CAM (integrin-β) and ECMs (collagen and collagenase) expression.
Not only integrin is a key molecule in cell migration, we propose that penaeidin functions in wound-induced inflammatory responses of shrimps in the second part of this research.
We established the in vivo knockdown technique of penaeidin first. Penaeidin was successfully knockdown after injection of penaeidin-specific siRNA by Q-PCR and ELISA examination. Comparing with the untreated shrimp (UT), penaeidin in the wound tissue increased to 1173% at 2 h post-wound but only 446% after penaeidin knockdown and wound. In the peripheral hemolymph penaeidin decreased to 76% at 2 h post-wound and to 32% after penaeidin knockdown and wound. ELISA presented parallel results with Q-PCR in penaeidin expression level after treatments. The wound tissue sections in H&E stain were compared in penaeidin-normal and penaeidin-knockdown shrimps. Only the shrimps at normal penaeidin expression level presented the concentration of hemocytes phenomenon in the wound tissue at 2 h post-wound. This phenomenon was recovered in the penaeidin knockdown shrimps by adding recombinant penaeidin or PRD to the wound tissue, but not with CRD. Penaeidin-positive granulocytes could be specifically identified through the rabbit anti-PRD antibody and the composition of hemocytes was tested in peripheral hemolymph by flow cytometry and wound tissue by immunohistochemistry. Total hemocytes count did not present significant variation before or after wounding, but the number of penaeidin-positive granulocytes decreased in the peripheral hemolymph post-wound (from 86% of total granulocytes decreasing to 62%). Furthermore, the average expression of penaeidin in each granulocyte did not change. In the previous study, 8~14% of total hemocytes belongs to granulocyte and semi-granulocytes. The hemocytes that concentrated in the wound tissue were 80% penaeidin-positive granulocytes. We suggest that the decrease in penaeidin-positive granulocytes in the peripheral hemolymph was the reason for cell migration toward the wound tissue. Penaeidin-positive granulocytes in the wound tissue decreased after knockdown of penaeidin, but could be recovered by adding PRD. Penaeidin was also found to be simultaneously expressed with integrin in vivo. We suggest that penaeidin-positive granulocytes migrated to the wound tissue through integrin-dependent cell migration. This indicates that penaeidin possesses autocrine activity through integrin-dependent cell migration.
In conclusion, penaeidin is an AMP with cytokine function. PRD is the cytokine functional domain of penaeidin, which acts as a pro-inflammatory cytokine to attract penaeidin-positive granulocytes to the wound tissue thus functioning as autocrine to repair the damaged tissue.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T07:12:38Z (GMT). No. of bitstreams: 1
ntu-99-D94b41004-1.pdf: 1160287 bytes, checksum: 081799dd7ac986fde7e4de7bb37b5943 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents謝辭………………..…………. ………………..…….. ……………….………………i
中文摘要………..……………. ………………..…….. ……………………...………iii
英文摘要…………………..…. ………………………. ………………………………vi
目錄………..…………………. ……………………… ………………………………ix
表目次…………………….….. ………………..…….. ……..……………………….xi
圖目次………………………... ………..…………….. …..…………………………xii
略稱對照…………………..…. ……………..……….. …………………………….xiii
研究動機………………..……. ………………..…….. …..…………………………..1
第一章 文獻回顧…….……… ……..……………….. ………………..……………..1
第二章 對蝦素具有細胞激素的特色並能藉由調控整合素的表現以促進顆粒型及半顆粒型血球吸附
前言……………….…. ………..…………….. ………….………………….20
材料與方法………… ……..……………….. ……….…………………….22
結果………….……... …..………………….. .…………………………….28
討論…………….….. ..…………………….. .…………………………….33
第三章 對蝦素的脯氨酸豐富區域具有自分泌素的特徵可趨化對蝦素表現顆粒型血球往創傷引發的發炎區域遷移
前言……..…………. ……………………….. .…………………………….35
材料與方法………… …..………………….. …………….……………….37
結果……………..…. ……………………….. ….………………………….42
討論……..…………. ……..……………….. …….……………………….47
第四章 討論……….………… …..………………….. ………….………………….50
參考文獻………………………. …..………………….. …….……………………….54
附表…………………………… …………..………….. …………….……………….67
表.…………………………….. ……………………… …….……………………….71
圖……………………………... …………..………….. ……………..………………74
附錄………………..…………. ………..…………….. …..…………………………96
dc.language.isozh-TW
dc.subject細胞趨化zh_TW
dc.subject對蝦素zh_TW
dc.subject脯氨酸豐富區域zh_TW
dc.subject小段干擾RNA (siRNA)zh_TW
dc.subject促發炎反應細胞激素zh_TW
dc.subjectpenaeidinen
dc.subjectchemotaxisen
dc.subjectpro-inflammatory cytokineen
dc.subjectshort-interfering RNA (siRNA)en
dc.subjectproline-rich domainen
dc.title對蝦素經由趨化顆粒球而調控發炎反應zh_TW
dc.titleTiger shrimp (Penaeus monodon) penaeidin modulates the inflammatory response by chemotaxis of granulocytesen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee宋宏紅,李心予,李建國,徐立中,陳志毅
dc.subject.keyword對蝦素,脯氨酸豐富區域,小段干擾RNA (siRNA),促發炎反應細胞激素,細胞趨化,zh_TW
dc.subject.keywordpenaeidin,proline-rich domain,short-interfering RNA (siRNA),pro-inflammatory cytokine,chemotaxis,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2010-09-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved