請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4875完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信銘(Hsin-Ming Lu) | |
| dc.contributor.author | Shu-Jing Shen | en |
| dc.contributor.author | 沈書靜 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:49:21Z | - |
| dc.date.available | 2017-10-12 | |
| dc.date.available | 2021-05-14T17:49:21Z | - |
| dc.date.copyright | 2015-10-12 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-09-16 | |
| dc.identifier.citation | [1] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. the Journal of machine Learning research, 3, 993-1022.
[2] Chu, Y. T., Ng, Y. Y., & Wu, S. C. (2010). Comparison of Different Comorbidity Measures for Use with Administrative Data in Predicting Short-and Long-term Mortality. BMC health services research, 10(1), 140. [3] Dong, Y. H., Chang, C. H., Shau, W. Y., Kuo, R. N., Lai, M. S., & Chan, K. A. (2013). Development and Validation of a Pharmacy‐Based Comorbidity Measure in a Population‐Based Automated Health Care Database. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 33 (2), 126-136. [4] Elixhauser, A., Steiner, C., Harris, D. R., & Coffey, R. M. (1998). Comorbidity Measures for Use with Administrative Data. Medical care, 36 (1), 8-27. [5] Ghassemi, M., Naumann, T., Doshi-Velez, F., Brimmer, N., Joshi, R., Rumshisky, A., & Szolovits, P. (2014, August). Unfolding Physiological State: Mortality Modelling in Intensive Care Units. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining , 75-84, ACM. [6] Lemke, K. W., Weiner, J. P., & Clark, J. M. (2012). Development and Validation of a Model for Predicting Inpatient Hospitalization. Medical care, 50 (2), 131-139. [7] Mao, Y., Chen, W., Chen, Y., Lu, C., Kollef, M., & Bailey, T. (2012, August). An Integrated Data Mining Approach to Real-time Clinical Monitoring and Deterioration Warning. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 1140-1148. ACM. [8] Parker, J. P., McCombs, J. S., & Graddy, E. A. (2003). Can Pharmacy Data Improve Prediction of Hospital Outcomes?: Comparisons with a Diagnosis-based Comorbidity Measure. Medical care, 41 (3), 407-419. [9] Putnam, K. G., Buist, D. S., Fishman, P., Andrade, S. E., Boles, M., Chase, G. A., ...& Chan, K. A. (2002). Chronic Disease score as a Predictor of Hospitalization. Epidemiology, 13 (3), 340-346. [10] Saria, S., McElvain, G., Rajani, A. K., Penn, A. A., &Koller, D. L. (2010). Combining Structured and Free-text Data for Automatic Coding of Patient Outcomes. In AMIA Annual Symposium Proceedings, Vol. 2010, 712. American Medical Informatics Association. [11] Von Korff, M., Wagner, E. H., & Saunders, K. (1992). A Chronic DiseaseScore from Automated Pharmacy Data. Journal of clinical epidemiology, 45 (2), 197-203. [12] 朱育增, &吳肖琪. (2010). 回顧與探討次級資料適用之共病測量方法. 臺灣公共衛生雜誌, 29 (1), 8-21. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4875 | - |
| dc.description.abstract | 現代人對健康的重視逐漸提升,未來健康狀況的預測是現今相當重要的議題,其中,住院為重大的醫療事件,因照護成本高,不論對個人、醫院、全民健康保險都是一項較沉重的負擔,因此,未來是否會住院成為許多人所關心的議題,本研究將聚焦於次年與兩年後的住院率及長期住院率的預測。
過去的研究中,預測未來健康事件時,經常使用合併症指標(Comorbidity index)將病情嚴重性量化,現在主要有以診斷基礎合併症指標和以藥物處方為基礎合併症指標。由於合併症指標能用來表現病情的嚴重程度,因此常被許多研究者作為預測未來健康狀況的特徵值之一。因此,本研究將合併症指標做為預測特徵值,並同時使用兩種合併症指標作為預測特徵值,提升預測表現。除了使用合併症指標當作預測特徵值,也使用機器學習(Machine learning)的方式,例如:特徵值選擇(feature selection)和主題模型(Topic model),尋找能預測患者未來健康狀況的特徵值。本研究希望透過不同的特徵值及模型,改善未來健康風險的預測。 從實驗結果來看,本研究所使用的特徵值皆具有預測未來住院的能力,而結合不同的合併症指標,比單獨使用其中一種的表現來得佳。另外,透過機器學習方法找出的特徵值,在預測未來住院的表現上,比合併症指標表現來得好,未來除了使用合併症指標預測未來健康風險,也能參考機器學習方法找出的特徵值,改善預測結果。 | zh_TW |
| dc.description.abstract | With increasing attention on individual health, the prediction of individual health risk is an important issue today. One of the important health risks is the hospitalization. The hospitalization is costly for individual, society and health insurance, and many people concern this issue. Therefore, this study focuses on predicting subsequent-year and subsequent-2year hospitalizations.
In the past, many research use comorbidity index to quantify the diseases and present the risk of individual health. They predict the risk of individual health by evaluating one’s comorbidity score. For this reason, we use comorbidity as our feature to predict future hospitalization. We also combine different comorbidity index to improve performance. In addition, we use machine learning method, such as feature selection and topic model to find the factors which affect individual’s future health status. Our research expects to improve predicting performance of the risk of individual health by using different feature combination and model. Our results show that both comorbidity index and the feature found by machine learning methods have good performance. In addition, the performance predicted by the feature found by machine learning methods is better than comorbidity index. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:49:21Z (GMT). No. of bitstreams: 1 ntu-104-R02725006-1.pdf: 1775809 bytes, checksum: 07396238d6d51734ef10a7044f6279ae (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 ii
摘要 iii Abstract iv 圖目錄 vii 表目錄 viii 第一章 緒論 1 1.1研究背景與動機 1 1.2 研究目的 3 第二章 文獻探討 4 2.1合併症測量及相關研究 4 2.2特徵值選取 7 2.3 模型方法 10 2.3.1 支持向量機 (Support Vector Machine) 11 2.3.2羅吉斯回歸模型 (Logistic Regression) 11 2.3.3 隨機森林 (random forest) 12 2.3.4 類神經網路 (neural-net) 12 2.4 小結 13 第三章 資料及方法 14 3.1 資料 14 3.2 前處理 16 3.2.1投保者基本資料處理 16 3.2.2預測特徵值 20 3.3預測特徵值組合 28 3.4預測模型 29 第四章 結果 30 4.1住院預測 30 4.2特徵值選取 45 第五章 結論 59 5.1 實驗結論與貢獻 59 5.2 未來研究方向 60 參考文獻 61 附錄A 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 住院預測 | zh_TW |
| dc.subject | 特徵值選取 | zh_TW |
| dc.subject | 合併症指標 | zh_TW |
| dc.subject | 健康風險 | zh_TW |
| dc.subject | 主題模型 | zh_TW |
| dc.subject | comorbidity index | en |
| dc.subject | feature selection | en |
| dc.subject | Topic model | en |
| dc.subject | Individual Health Risk | en |
| dc.subject | hospitalization prediction | en |
| dc.title | 健康風險預測 | zh_TW |
| dc.title | Predicting the Risk of Individual Health | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孔令傑,曹承礎 | |
| dc.subject.keyword | 健康風險,住院預測,合併症指標,特徵值選取,主題模型, | zh_TW |
| dc.subject.keyword | Individual Health Risk,hospitalization prediction,comorbidity index,feature selection,Topic model, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-09-16 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 1.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
