請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48744完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張文章 | |
| dc.contributor.author | Hung-Cheng Li | en |
| dc.contributor.author | 李鴻承 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:11:37Z | - |
| dc.date.available | 2015-10-12 | |
| dc.date.copyright | 2010-10-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-10-05 | |
| dc.identifier.citation | 1. Blumberg BS (1997) Hepatitis B virus, the vaccine, and the control of primary cancer of the liver. Proc Natl Acad Sci U S A 94: 7121-7125.
2. Ganem D, Prince AM (2004) Hepatitis B virus infection--natural history and clinical consequences. N Engl J Med 350: 1118-1129. 3. Purcell RH (1994) Hepatitis viruses: changing patterns of human disease. Proc Natl Acad Sci U S A 91: 2401-2406. 4. Chang MH, Chen CJ, Lai MS, Hsu HM, Wu TC, et al. (1997) Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N Engl J Med 336: 1855-1859. 5. Shih C (2008) Functional Significance of Naturally Occurring Hepatitis B Virus Variants. In: Locarnini S LC, editor. Human Virus Guides- Human Hepatitis B Viruses. London, UK: International Medical Press. pp. 23-41. 6. Liaw YF, Chu CM (2009) Hepatitis B virus infection. Lancet 373: 582-592. 7. Summers J, Mason WS (1982) Replication of the genome of a hepatitis B--like virus by reverse transcription of an RNA intermediate. Cell 29: 403-415. 8. Tuttleman JS, Pourcel C, Summers J (1986) Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 47: 451-460. 9. Chua PK, Tang FM, Huang JY, Suen CS, Shih C (2010) Testing the balanced electrostatic interaction hypothesis of hepatitis B virus DNA synthesis by using an in vivo charge rebalance approach. J Virol 84: 2340-2351. 10. Newman M, Chua PK, Tang FM, Su PY, Shih C (2009) Testing an electrostatic interaction hypothesis of hepatitis B virus capsid stability by using an in vitro capsid disassembly/reassembly system. J Virol 83: 10616-10626. 11. Le Pogam S, Chua PK, Newman M, Shih C (2005) Exposure of RNA templates and encapsidation of spliced viral RNA are influenced by the arginine-rich domain of human hepatitis B virus core antigen (HBcAg 165-173). J Virol 79: 1871-1887. 12. Michalak T, Nowoslawski A (1982) Crystalline aggregates of hepatitis B core particles in cytoplasm of hepatocytes. Intervirology 17: 247-252. 13. Petit MA, Pillot J (1985) HBc and HBe antigenicity and DNA-binding activity of major core protein P22 in hepatitis B virus core particles isolated from the cytoplasm of human liver cells. J Virol 53: 543-551. 14. Chu CM, Liaw YF (1987) Intrahepatic distribution of hepatitis B surface and core antigens in chronic hepatitis B virus infection. Hepatocyte with cytoplasmic/membranous hepatitis B core antigen as a possible target for immune hepatocytolysis. Gastroenterology 92: 220-225. 15. Chu CM, Yeh CT, Sheen IS, Liaw YF (1995) Subcellular localization of hepatitis B core antigen in relation to hepatocyte regeneration in chronic hepatitis B. Gastroenterology 109: 1926-1932. 16. Hsu HC, Su IJ, Lai MY, Chen DS, Chang MH, et al. (1987) Biologic and prognostic significance of hepatocyte hepatitis B core antigen expressions in the natural course of chronic hepatitis B virus infection. J Hepatol 5: 45-50. 17. Naoumov NV, Daniels HM, Davison F, Eddleston AL, Alexander GJ, et al. (1993) Identification of hepatitis B virus-DNA in the liver by in situ hybridization using a biotinylated probe. Relation to HBcAg expression and histology. J Hepatol 19: 204-210. 18. Yoo JY, Kim HY, Park CK, Khang SK, Jeong JW, et al. (1990) Significance of hepatitis B core antigen in the liver in patients with chronic hepatitis B and its relation to hepatitis B virus DNA. J Gastroenterol Hepatol 5: 239-243. 19. Lai MC, Peng TY, Tarn WY (2009) Functional interplay between viral and cellular SR proteins in control of post-transcriptional gene regulation. FEBS J 276: 1517-1526. 20. Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39: 499-509. 21. Lanford RE, Butel JS (1984) Construction and characterization of an SV40 mutant defective in nuclear transport of T antigen. Cell 37: 801-813. 22. Nakielny S, Dreyfuss G (1999) Transport of proteins and RNAs in and out of the nucleus. Cell 99: 677-690. 23. Fischer U, Huber J, Boelens WC, Mattaj IW, Luhrmann R (1995) The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82: 475-483. 24. Meyer BE, Malim MH (1994) The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm. Genes Dev 8: 1538-1547. 25. Yeh CT, Liaw YF, Ou JH (1990) The arginine-rich domain of hepatitis B virus precore and core proteins contains a signal for nuclear transport. J Virol 64: 6141-6147. 26. Eckhardt SG, Milich DR, McLachlan A (1991) Hepatitis B virus core antigen has two nuclear localization sequences in the arginine-rich carboxyl terminus. J Virol 65: 575-582. 27. Kann M, Sodeik B, Vlachou A, Gerlich WH, Helenius A (1999) Phosphorylation-dependent binding of hepatitis B virus core particles to the nuclear pore complex. J Cell Biol 145: 45-55. 28. Yoon DW, Lee H, Seol W, DeMaria M, Rosenzweig M, et al. (1997) Tap: a novel cellular protein that interacts with tip of herpesvirus saimiri and induces lymphocyte aggregation. Immunity 6: 571-582. 29. Johnson LA, Sandri-Goldin RM (2009) Efficient nuclear export of herpes simplex virus 1 transcripts requires both RNA binding by ICP27 and ICP27 interaction with TAP/NXF1. J Virol 83: 1184-1192. 30. Stutz F, Izaurralde E (2003) The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol 13: 319-327. 31. Nassal M (1992) The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. J Virol 66: 4107-4116. 32. Radziwill G, Tucker W, Schaller H (1990) Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity. J Virol 64: 613-620. 33. Yuan TT, Sahu GK, Whitehead WE, Greenberg R, Shih C (1999) The mechanism of an immature secretion phenotype of a highly frequent naturally occurring missense mutation at codon 97 of human hepatitis B virus core antigen. J Virol 73: 5731-5740. 34. Szilvay AM, Brokstad KA, Boe SO, Haukenes G, Kalland KH (1997) Oligomerization of HIV-1 Rev mutants in the cytoplasm and during nuclear import. Virology 235: 73-81. 35. Conway JF, Watts NR, Belnap DM, Cheng N, Stahl SJ, et al. (2003) Characterization of a conformational epitope on hepatitis B virus core antigen and quasiequivalent variations in antibody binding. J Virol 77: 6466-6473. 36. Ning B, Shih C (2004) Nucleolar localization of human hepatitis B virus capsid protein. J Virol 78: 13653-13668. 37. Takahashi K, Machida A, Funatsu G, Nomura M, Usuda S, et al. (1983) Immunochemical structure of hepatitis B e antigen in the serum. J Immunol 130: 2903-2907. 38. Chang J, Sigal LJ, Lerro A, Taylor J (2001) Replication of the human hepatitis delta virus genome Is initiated in mouse hepatocytes following intravenous injection of naked DNA or RNA sequences. J Virol 75: 3469-3473. 39. Yang PL, Althage A, Chung J, Chisari FV (2002) Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc Natl Acad Sci U S A 99: 13825-13830. 40. Bennett RP, Presnyak V, Wedekind JE, Smith HC (2008) Nuclear Exclusion of the HIV-1 host defense factor APOBEC3G requires a novel cytoplasmic retention signal and is not dependent on RNA binding. J Biol Chem 283: 7320-7327. 41. Pines J, Hunter T (1994) The differential localization of human cyclins A and B is due to a cytoplasmic retention signal in cyclin B. EMBO J 13: 3772-3781. 42. Wen W, Meinkoth JL, Tsien RY, Taylor SS (1995) Identification of a signal for rapid export of proteins from the nucleus. Cell 82: 463-473. 43. Ossareh-Nazari B, Bachelerie F, Dargemont C (1997) Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278: 141-144. 44. Terry LJ, Shows EB, Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318: 1412-1416. 45. Juillard F, Hiriart E, Sergeant N, Vingtdeux-Didier V, Drobecq H, et al. (2009) Epstein-Barr virus protein EB2 contains an N-terminal transferable nuclear export signal that promotes nucleocytoplasmic export by directly binding TAP/NXF1. J Virol 83: 12759-12768. 46. Zlotnick A, Cheng N, Stahl SJ, Conway JF, Steven AC, et al. (1997) Localization of the C terminus of the assembly domain of hepatitis B virus capsid protein: implications for morphogenesis and organization of encapsidated RNA. Proc Natl Acad Sci U S A 94: 9556-9561. 47. Liao W, Ou JH (1995) Phosphorylation and nuclear localization of the hepatitis B virus core protein: significance of serine in the three repeated SPRRR motifs. J Virol 69: 1025-1029. 48. Rabe B, Vlachou A, Pante N, Helenius A, Kann M (2003) Nuclear import of hepatitis B virus capsids and release of the viral genome. Proc Natl Acad Sci U S A 100: 9849-9854. 49. Weigand K, Knaust A, Schaller H (2010) Assembly and export determine the intracellular distribution of hepatitis B virus core protein subunits. J Gen Virol 91: 59-67. 50. Roossinck MJ, Siddiqui A (1987) In vivo phosphorylation and protein analysis of hepatitis B virus core antigen. J Virol 61: 955-961. 51. Lambert C, Prange R (2001) Dual topology of the hepatitis B virus large envelope protein: determinants influencing post-translational pre-S translocation. J Biol Chem 276: 22265-22272. 52. Rabe B, Delaleau M, Bischof A, Foss M, Sominskaya I, et al. (2009) Nuclear entry of hepatitis B virus capsids involves disintegration to protein dimers followed by nuclear reassociation to capsids. PLoS Pathog 5: e1000563. 53. Chang WW, Su IJ, Lai MD, Chang WT, Huang W, et al. (2003) The role of inducible nitric oxide synthase in a murine acute hepatitis B virus (HBV) infection model induced by hydrodynamics-based in vivo transfection of HBV-DNA. J Hepatol 39: 834-842. 54. Huang LR, Wu HL, Chen PJ, Chen DS (2006) An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc Natl Acad Sci U S A 103: 17862-17867. 55. Yeh CT, Wong SW, Fung YK, Ou JH (1993) Cell cycle regulation of nuclear localization of hepatitis B virus core protein. Proc Natl Acad Sci U S A 90: 6459-6463. 56. Hatton T, Zhou S, Standring DN (1992) RNA- and DNA-binding activities in hepatitis B virus capsid protein: a model for their roles in viral replication. J Virol 66: 5232-5241. 57. Hosono S, Tai PC, Wang W, Ambrose M, Hwang DG, et al. (1995) Core antigen mutations of human hepatitis B virus in hepatomas accumulate in MHC class II-restricted T cell epitopes. Virology 212: 151-162. 58. Jeng WJ, Sheen IS, Liaw YF (2010) Hepatitis B virus DNA level predicts hepatic decompensation in patients with acute exacerbation of chronic hepatitis B. Clin Gastroenterol Hepatol 8: 541-545. 59. Chu CM, Liaw YF (2007) Spontaneous relapse of hepatitis in inactive HBsAg carriers. Hepatol Int 1: 311-315. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48744 | - |
| dc.description.abstract | 是什麼因素決定B型肝炎病毒(HBV)之核心蛋白(HBc)和顆粒在肝細胞內的位置,至今仍然不清楚。為了探索此一基礎科學問題,本論文用免疫螢光染色以共軛聚焦顯微鏡觀察和細胞核與細胞質分離法結合西方墨點分析,確定了在HBc上富含精氨酸的蛋白質結構模組(ARD)中有四個不同的HBc位置決定訊號。ARD主要是由四個緊密群集的富含精氨酸的次功能區域所組成。第一個和第三個ARD次功能區域是兩個互相依賴的細胞核輸入訊號(NLS),而第二個和第四個ARD次功能區域,功能上是兩個獨立的細胞核運出信號(NES)。此結論是由五個獨立的實驗證據所支持:
一)在肝癌細胞中,使用B型肝炎病毒複製系統並且以雙盲的方式分析,結果在15種ARD次功能區域之HBc突變株中,很有趣地,只有突變第二個和第四個ARD次功能區域的HBc可以很明顯地位於細胞核中。 二)上述這些實驗結果也能夠在猿病毒腫瘤抗原(SV40 large T antigen)結合突變或正常HBc穿梭訊號的異源性嵌合蛋白質報告系統中研究得到證實。 三)由異核或同核融合分析方法, SV40 large T antigen結合HBc穿梭信號的嵌合蛋白質的確能從轉染細胞的細胞核穿梭到另一個接受體細胞的細胞核中,這也表示HBc的ARD存在有新穎的NES,而此NES是對於leptomycin B具有抵抗性。 四)由免疫共沉澱的方法,很驚訝地發現HBc的ARD可以和TAP/NXF1細胞因子(Tip結合蛋白/細胞核運出因子-1)在物理上有交互結合作用;TAP已知對於mRNA和蛋白質的細胞核運出非常重要。在肝癌細胞中,使用B型肝炎病毒複製系統並且轉染專一性的TAP小干擾RNA (siRNA)可將HBc顯著地從細胞質轉移到細胞核,並且導致降低病毒的複製近7倍,以及B型肝炎病毒表面抗原的分泌減少近10倍。 五)在老鼠實驗模式中,以尾端靜脈流體動力注射法,同樣地也支持突變第二個和第四個ARD次功能區域的HBc能夠明顯累積在細胞核中。 在本篇論文中,除了重新修訂HBc的NLS位置,更重要的是我們發現HBc的NES能夠透過新穎的TAP細胞因子,可以快速來回穿梭於細胞核和細胞質之間。 | zh_TW |
| dc.description.abstract | It remains unclear what determines the subcellular localization of hepatitis B virus (HBV) core protein (HBc) and particles. To address this fundamental issue, we have identified four distinct HBc localization signals in the arginine rich domain (ARD) of HBc, using immunofluorescence confocal microscopy and fractionation/Western blot analysis. ARD consists of four tight clustering arginine-rich subdomains. ARD-I and ARD-III are associated with two co-dependent nuclear localization signals (NLS), while ARD-II and ARD-IV behave like two independent nuclear export signal (NES). This conclusion is based on five independent lines of experimental evidence:
i) Using an HBV replication system in hepatoma cells, we demonstrated in a double-blind manner that only the HBc of mutant ARD-II+IV, among a total of 15 ARD mutants, can predominantly localize to the nucleus. ii) These results were confirmed using a chimera reporter system by placing mutant or wild type HBc trafficking signals in the heterologous context of SV40 large T antigen (LT). iii) By a heterokaryon or homokaryon analysis, the fusion protein of SV40 LT-HBc ARD appeared to transport from nuclei of transfected donor cells to nuclei of recipient cells, suggesting the existence of an NES in HBc ARD. This putative NES is leptomycin B resistant. iv) We demonstrated by co-immunoprecipitation that HBc ARD can physically interact with a cellular factor TAP/NXF1 (Tip-associated protein/nuclear export factor-1), which is known to be important for nuclear export of mRNA and proteins. Treatment with a TAP-specific siRNA strikingly shifted cytoplasmic HBc to nucleus, and led to a near 7-fold reduction of viral replication, and a near 10-fold reduction in HBsAg secretion. v) HBc of mutant ARD-II+IV was accumulated predominantly in the nucleus in a mouse model by hydrodynamic delivery. In addition to the revised map of NLS, our results suggest that HBc could shuttle rapidly between nucleus and cytoplasm via a novel TAP-dependent NES. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:11:37Z (GMT). No. of bitstreams: 1 ntu-99-D93b46012-1.pdf: 2831106 bytes, checksum: a765df4e3b50b7b5cc0b931fc44d31c3 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Index Pages
誌謝………………………….…….…….…….…i 中文摘要………………………….…….…….…ii ABSTRACT…………………………….…….…….iv ABBREVIATION………………………………………vi CHAPTER 1 INTRODUCTION………….…….…...1 CHAPTER 2 MATERIALS AND METHODS…….….…6 CHAPTER 3 RESULTS…….…….……….……...18 CHAPTER 4 DISCUSSION…….…….…….…..…37 REFERENCE…….…….………….…….…….……47 FIGURES …………….………….…...………….56 TABLE …………….………….…...………….…82 | |
| dc.language.iso | en | |
| dc.subject | 細胞核運出信號(NES) | zh_TW |
| dc.subject | 細胞核質穿梭(Nucleocytoplasmic shuttling) | zh_TW |
| dc.subject | 細胞核輸入訊號(NLS) | zh_TW |
| dc.subject | B型肝炎病毒(HBV)之核心蛋白(HBc) | zh_TW |
| dc.subject | B型肝炎病毒(HBV) | zh_TW |
| dc.subject | Nuclear export signal (NES) | en |
| dc.subject | Nuclear localization signals (NLS) | en |
| dc.subject | Nucleocytoplasmic shuttling | en |
| dc.subject | Hepatitis B virus (HBV) | en |
| dc.subject | Hepatitis B virus core protein (HBc) | en |
| dc.title | 人類B型肝炎病毒之殼體蛋白及顆粒來回穿梭於細胞核質之間的探討 | zh_TW |
| dc.title | Nuclear Export and Import of Human Hepatitis B Virus Capsid Protein and Particles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 施嘉和 | |
| dc.contributor.oralexamcommittee | 張震東,陳俊任,張雯 | |
| dc.subject.keyword | B型肝炎病毒(HBV),B型肝炎病毒(HBV)之核心蛋白(HBc),細胞核運出信號(NES),細胞核輸入訊號(NLS),細胞核質穿梭(Nucleocytoplasmic shuttling), | zh_TW |
| dc.subject.keyword | Hepatitis B virus (HBV),Hepatitis B virus core protein (HBc),Nuclear export signal (NES),Nuclear localization signals (NLS),Nucleocytoplasmic shuttling, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-10-07 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
