請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48736
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 汪根欉 | |
dc.contributor.author | Chi-Yen Lin | en |
dc.contributor.author | 林季延 | zh_TW |
dc.date.accessioned | 2021-06-15T07:11:09Z | - |
dc.date.available | 2015-10-22 | |
dc.date.copyright | 2010-10-22 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-10-11 | |
dc.identifier.citation | Clarkson, R. G.; Gomberg, M. J. Am. Chem. Soc. 1930, 52, 2881.
Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Chem. Rev. 2007, 107, 1011. (a) Pudzich, R.; Salbeck, J. Synth. Met. 2003, 138, 21. (b) Lin, H.-W.; Ku, S.-Y.; Su, H.-C.; Huang, C.-W.; Lin, Y.-T.; Wong, K.-T.; Wu, C.-C. Adv. Mater. 2005, 17, 2489. (a) Harada, N; Ono, H; Nishiwaki, T; Uda, H. J. Chem. Soc., Chem.Commun. 1991, 1753. (b) Alcazar, V.; Diederich, F. Angew. Chem. 1992, 104, 1503. (c) Cuntze, J., Diederich, F. Helv. Chim. Acta 1997, 80, 897. (d) Hass, G.; Prelog, V. Helv. Chim. Acta 1969, 52, 1202. (e) Hass, G.; Hulbert, P. B.; Klyne, W.; Prelog, V.; Snatzke. G. Helv. Chim. Acta 1971, 54, 491. (f) Prelog, V.; Bedekovic, D. Helv. Chim. Acta 1979, 62, 2285. Eliel, E. L.; Wilen, S. H.; Doyle, M. P. Basic organic stereochemistry, New York: Wiley, 2001, 620. Saragi, T. P. I.; Fuhrmann-Lieker, T.; Salbeck, J. Adv. Funct. Mat. 2006, 16, 966. Lin, H.-W.; Ku, S.-Y.; Su, H.-C.; Huang, C.-W.; Lin, Y.-T.; Wong, K.-T.; Wu, C.-C. Adv. Mater. 2005, 17, 2489. Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M. Nature 1998, 395, 583. Snaith, H. J.; Schmidt-Mende, L. Adv. Mater. 2007, 19, 3187. (a) Snaith, H. J.; Moule, A. J.; Klein, C.; Meerholz, K.; Friend, R. H.; Gratzel, M. Nano Lett. 2007, 7, 3372. (b) Snaith, H. J.; Schmidt-Mende, L. Adv. Mater. 2007, 19, 3187. (c) Karthikeyan, C. S.; Thelakkat, M. Inorg. Chim. Acta 2008, 361, 635. Chiang, C.-L.; Shu, C.-F.; Chen, C.-T. Org. Lett. 2005, 7, 3717. (a) Liao, Y.-L.; Lin, C.-Y.; Wong, K.-T.; Hou, T.-H.; Hung, W.-Y. Org. Lett. 2007, 9, 4511. (b) Tsai, M.-H.; Lin, H.-W.; Su, H.-C.; Ke, T.-H.; Wu, C.-C.; Fang, F.-C.; Liao, Y.-L.; Wong, K.-T.; Wu, C.-I. Adv. Mater. 2006, 18, 1216. Wong, K.-T.; Liao, Y.-L.; Lin, Y.-T.; Su, H.-C.; Wu, C.-C. Org. Lett. 2005, 7, 5131. Jeong, S. M.; Ohtsuka, Y.; Ha, N. Y.; Takanishi, Y.; Ishikawa, K.; Takezoe, H.; Nishimura, S.; Suzaki, G. Appl. Phys. Lett. 2007, 90, 211106. Toda, F.; Tanaka, K. J. Org. Chem. 1988, 53, 3607. Thiemann, F.; Piehler, T.; Haase, D.; Saak, W.; Luetzen, A. Eur. J. Org. Chem. 2005, 1991. Shishido, K.; Takahashi, K.; Fukumoto K.; Kametani T.; Honda,T. J. Org. Chem. 1987, 52, 5704. Felner, I.; Schenker, K. Helv. Chim. Acta 1970, 53, 754. Harada, N.; Nakanishi, K. Acc. Chem. Res. 1972, 5, 257. Nakanish, K.; Berova, N.; Woody, R. W. Circular dichroism: Principles and Applications, New York: Wiley, 2000, 361. Riehl, J. P.; Richardson, F. S. Chem. Rev. 1986, 86, 1. (a) Geng, Y.; Trajkovska, A.; Katsis, D.; Ou, J. J.; Culligan, S. W.; Chen, S. H. J. Am. Chem. Soc. 2002, 124, 8337. (b) Geng, Y.; Culligan, S. W.; Trajkovska, A.; Wallace, J. U.; Chen, S. H. Chem. Mater. 2003, 15, 542. (c) Geng, Y.; Chen, A. C. A.; Ou, J. J.; Chen, S. H.; Klubek, K.; Vaeth, K. M.; Tang, C. W. Chem. Mater. 2003, 15, 4352-4360. (d) Geng, Y.; Trajkovska, A.; Culligan, S. W.; Ou, J. J.; Chen, H. M. P.; Katsis, D.; Chen, S. H. J. Am. Chem. Soc. 2003, 125, 14032. (e) Culligan, S. W.; Geng, Y.; Chen, S. H.; Klubek, K.; Vaeth, K. M.; Tang, C. W. Adv. Mater. 2003, 15, 1176. (f) Chen, A. C. A.; Culligan, S. W.; Geng, Y.; Chen, S. H.; Klubek, K.; Vaeth, K. M.; Tang, C. W. Adv. Mater. 2004, 16, 783. (g) Chen, A. C.-A.; Wallace, J. U.; Wei, S. K.-H.; Zeng, L.; Chen, S. H. Chem. Mater. 2006, 18, 204. (h) Chen, S. H.; Katsis, D.; Schmid, A. W.; Mastrangelo, J. C.; Tsutsui, T.; Blanton, T. N. Nature, 1999, 397, 506. Wang, C.; Fei, H .; Qiu, Y.; Yang, Y.; Wei, Z.; Tian, Y.; Chen, Y.; Zhao, Y. Appl. Phys. Lett. 1999, 74, 19. (a) Huck, N. P. M.; Jager, W. F.; de Lange, B.; Feringa, B. L. Science, 1996, 273, 1686. (b) Suarez, M.; Schuster, G. B. J. Am. Chem. Soc. 1995, 117, 6732. Petoud, S.; Muller, G.; Moore, E. G.; Xu, J. D.; Sokolnicki, J.; Riehl, J. P.; Le, U. N.; Cohen, S. M.; Raymond, K. N. J. Am. Chem. Soc. 2007, 129, 77. (a) Peeters, E.; Christiaans, M. P. T.; Janssen, R. A. J.; Schoo, H. F. M.; Dekkers, H. P. J. M.; Meijer, E. W. J. Am. Chem. Soc. 1997, 119, 9909. (b) Oda, M.; Nothofer, H.-G.; Scherf, U.; Syunjić, V.; Richter, D.; Regenstein, W. Neher, D. Macromolecules 2002, 35, 6792. http://www.kentdisplays.com/technology/reflextechnology.html Cook, M. J.; Wilson, M. R. J. Chem. Phys. 2000, 112, 1560. (a) Solladie, G.; Zimmermann, R. G. Angew. Chem., Int. Ed. Engl. 1984, 23, 348-362. (b) Superchi, S.; Donnoli, M. I.; Proni, G.; Spada, G. P.; Rosini, C. J. Org. Chem. 1999, 64, 4762. Gunes S.; Sariciftci, N. S. Inorg. Chim. Acta 2008, 361, 581. Regan, B. O.; Gratzel, M. Nature 1991, 353, 737. Moreira Goncalves, L.; de Zea Bermudez, V.; Aguilar Ribeiro, H.; Magalhaes Mendes, A. Energy Environ. Sci. 2008, 1, 655. Mishra, A.; Fischer, M. K. R.; Bauerle, P. Angew. Chem. Int. Ed. 2009, 48, 2474. Gratzel, M. J. Photochem. Photobiol. C 2003, 4, 145. Kim, C.; Choi, H.; Kim, S.; Baik, C.; Song, K.; Kang, M.-S.; Kang, S.-O.; Ko, J. J. Org. Chem. 2008, 73, 7072. (a) Campbell, W. M.; Burrell, A. K.; Officer, D. L.; Jolley, K. W. Coord. Chem. Rev. 2004, 248, 1363. (b) Howie, W. H.; Claeyssens, F.; Miura, H.;Peter, L. M. J. Am. Chem. Soc. 2008, 130, 1367. (c) Chen, Z.; Li, F.; Huang, C. Curr. Org. Chem. 2007, 11, 1241. (d) Thavas, V.; Renugopalakrishnan, V.; Jose, R.; Ramakrishna, S. Mater. Sci. Eng. R. 2009, 63, 81. Tian, H.; Yang, X.; Chen, R.; Zhang, R.; Hagfeldt, A.; Sun. L. J. Phys. Chem. C 2008, 112, 11023. (a) Ning, Z.; Zhang, Q.; Wu, W.; Pei, H.; Liu, B.; Tian, H. J. Org. Chem. 2008, 73, 3791. (b) Ning, Z.; Zhang, Q.; Pei, H.; Luan, J.; Lu, C.; Cui, Y.; Tian, H. J. Phys. Chem. C 2009, 113, 10307. (a) Baheti, A.; Tyagi, P.; Justin-Thomas, K. R.; Hsu, Y.-C.; Lin, J.-T. J. Phys. Chem. C 2009, 113, 8541. (b) Zhou, G.; Pschirer, N.; Schoneboom, J. C.; Eickemeyer, F.; Baumgarten, M.; Mullen, K. Chem. Mater. 2008, 20, 1808. (c) Justin-Thomas, K. R.; Lin, J. T.; Hsu, Y.-C.; Ho, K.-C. Chem. Commun. 2005, 4098. (d) Yen, Y.-S.; Hsu, Y.-C.; Lin, J. T.; Chang, C.-W.; Hsu, C.-P.; Yin, D.-J. J. Phys. Chem. C 2008, 112, 12557. (e) Lin, J. T.; Chen, P.-C.; Yen, Y.-S.; Hsu, Y.-C.; Chou, H.-H.; Yeh, M.-C. P. Org. Lett. 2009, 11, 97. Liao, Y.-L. Synthesis, Properties and Optoelectronic Applications of Novel 2,2’ and 7,7’-Substituted 9,9’-Spirobifluorene Derivatives, National Taiwan University Doctoral Dissertation, 2006, 80. Roquet, S.; Cravino, A.; Leriche, P.; Aleveque, O.; Frere, P.; Roncali, J. J. Am. Chem. Soc. 2006, 128, 3459. (a) Shklover, V.; Ovchinnikov, Y. E.; Braginsky, L. S.; Zakeeruddin, S. M.; Gratzel, M. Chem. Mater. 1998, 10, 2533. (b) Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269. Abbotto, A.; Manfredi, N.; Marinzi, C.; De Angelis, F.; Mosconi, E.; Yum, J.-H.; Xianxi, Z.; Nazeeruddin, M. K.; Gratzel, M. Energy Environ. Sci. 2009, 2, 1094. Balanay, M. P.; Dipaling, C. V. P.; Lee, S. H.; Kim, D. H.; Lee, K. H. Sol. Energy Mater. Sol. Cells 2007, 91, 1775. Vlachopoulos, P.; Liska, P.; Augustynski, J.; Gratzel, M. J. Am. Chem. Soc. 1988, 110, 1216. Crispin, X.; Geskin, V.; Crispin, A.; Cornil, J.; Lazzaroni, R.; Salaneck, W. R.; Bredas, J.-L. J. Am. Chem. Soc. 2002, 124, 8131. (a) Nakamura, T.; Koyama, E.; Shimoi, Y.; Abe, S.; Ishida, T.; Tsukagoshi, K.; Mizutani, W.; Tokuhisa, H.; Kanesato, M.; Nakai, I.; Kondoh, H.; Ohta, T. J. Phys. Chem. B 2006, 110, 9195. (b) Nikiforov, M. P.; Zerweck, U.; Milde, P.; Loppacher, Ch.; Park, T.-H.; Uyeda, H. T.; Therien, M. J.; Eng, L.; Bonnell, D. Nano Lett. 2008, 8, 110. (c) Rosseau, R.; De Renzi, V.; Mazarello, R.; Marchetto, D.; Biagi, R.; Scandolo, S.; Del Pennino, U. J. Phys. Chem. B 2006, 110, 10862. (d) Gozlan, N.; Tisch, U.; Haick, H. J. Phys. Chem. C 2008, 112, 12988. (e) Homg, K.; Lee, L. W.; Yang, S. Y.; Shin, K.; Jeon, H.; Kim, S. H.; Yang, C.; Park, C. E. Org. Electron. 2008, 9, 21. (a) Hamadani, B. H.; Corley, D. A.; Ciszek, J. W.; Tour, J. M.; Nateson, D. Nano Lett. 2006, 6, 1303. (b) Hsiao, C.-C.; Chang, C.-H.; Lu, H.-H.; Chen, S.-A. Org. Electron. 2007, 8, 343. Cho, C.-P.; Tao, Y.-T. Langmuir 2007, 23, 7090. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474. Zidon, Y.; Shapira, Y.; Dittrich, Th.; Otero, L. Phys. Rev. B 2007, 75, 195327. Shi, Y.; Luo, S.-C.; Fang, W.; Zhang, K.; Ali, E. M.; Boey, F. Y. C.; Ying, J. Y.; Wang, J.; Yu, H.-H.; Li, L.-J. Org. Electron. 2008, 9, 859. (a) Wong, K.-T.; Lin, Y.-H.; Wu, H.-H.; Fungo, F. Org. Lett. 2007, 9, 4531. (b) Lu, S.; Liu, T.; Ke, L.; Ma, D.; Chua, S.-J.; Huang, W. Macromolecules 2005, 38, 8494. (c) Oyamada, T.; Chang, C.-H.; Chao, T.-C.; Fang, F.-C.; Wu, C.-C.; Wong, K.-T.; Sasabe, H.; Adachi, C. J. Phys. Chem. C 2007, 111, 111. (d) Wu, C.-C.; Liu, W.-G.; Hung, W.-Y.; Liu, T.-L.; Lin, Y.-T.; Lin, H.-W.; Wong, K.-T.; Chien, Y.-Y.; Chen, R.-T.; Hung, T.-H.; Chao, T.-C.; Chen, Y.-M. Appl. Phys. Lett. 2004, 87, 052103. (e) Natera, J.; Otero, L.; Sereno, L.; Fungo, F.; Wang, N.-S.; Tsai, Y.-M.; Hwu, T.-Y.; Wong, K.-T. Macromolecules 2007, 40, 4456. (f) Otero, L.; Sereno, L.; Fungo, F.; Liao, Y.-L.; Lin, C.-Y.; Wong, K.-T. Chem. Mater. 2006, 18, 3495. (a) Markham, J. P. J.; Namdas, E. B.; Anthopoulos, T. D.; Samuel, I. D. W.; Richards, G. J.; Burn, P. L. Appl. Phys. Lett. 2004, 85, 1463. (b) Lai, W.-Y.; Zhu, R.; Fan, Q.-L.; Hou, L.-T.; Cao, Y.; Huang, W. Macromolecules 2006, 39, 3707. (c) Levermore, P. A.; Xia, R.; Lai, W.; Wang, X. H.; Huang, W.; Bradley, D. D. C. J. Phys. D: Appl. Phys. 2007, 40, 1896. (d) Li, Z.; Di, C.; Zhu, Z.; Yu, G.; Li, Z.; Zeng, Q.; Li, Q.; Liu, Y.; Qin, J. Polymer 2006, 47, 7889. Mora-Sero, I.; Dittrich, Th.; Garcia-Belmonte, G.; Bisquert, J. J. Appl. Phys. 2006, 100, 103705. (a) Kronik, L.; Shapira, Y. Surf. Sci. Rep. 1999, 37, 1. (b) Dittrich, Th.; Bonisch, S.; Zabel, P.; Dube, S. Rev. Sci. Instrum. 2008, 79, 113903. (a) Gao, P.; Weaver, M. J. J. Phys. Chem. 1985, 89, 5040. (b) Corrigan, D. S.; Gao, P.; Leung, L.-W. H.; Weaver, M. J. Langmuir 1986, 2, 744. (c) Diogenes, I. C. N.; De Carvalho, I. M. M.; Longhnotti, E.; Lopes, L. G. F.; Temperini, L. M. A.; Andrade, G. F. S.; Moreira, I. S. J. Electroanal. Chem. 2007, 605, 1. Bard, A. J. Integrated Chemical Systems; Wiley, New York, 1994. Bard, A. J.; Faulkner, L. R. Electrochemical Methods—Fundamentals and Applications; John Wiley & Sons: New York, 1980. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. Burroughes, H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Nackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539. http://www.oled-display.net/ Pope, M.; Kailmann, H. P. J. Chem Phys. 1963, 38, 2042. (a) Adachi, C.; Tsutsui T.; Saito, S. Appl. Phys. Lett. 1990, 57, 531; (b) Era, M.; Adachi, C.; Tsutsui, T.; Saito, S. Chem. Phys. Lett. 1991, 178, 488. Steuerman, D. W.; Garcia, A.; Dante, M.; Yang, R.; Lofvander J. P.; Nguyen, T.-Q. Adv. Mater. 2008, 20, 528. Mullen, K.; Scherf, U. Organic Light Emitting Devices: Synthesis, properties, and applications,Wiley-VCH, 2006, 295. (a) Gong, X.; Wang, S.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv. Mater. 2005, 17, 2053. (b) Ma, W.; Iyer, P. K.; Gong, X.; Liu, B.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv. Mater. 2005, 17, 274. Burns, P. L.; Bradley, D. D. C.; Brown, A. R.; Friend, R. H.; Holmes, A. B. Synth.Met. 1991, 41, 261. (a) Schubert, U.; Husing, N.; Lorenz, A. Chem. Mater. 1995, 7, 2010. (b) Li, W.; Wang, Q.; Cui, J.; Chou, H.; Shaheen, S. E.; Jabbour, G. E.; Anderson, J.; Lee, P.; Kippelen, B.; Peyghambarian, N.; Armstrong, N. R.; Marks, T. J. Adv. Mater. 1999, 11, 730. (c) Huang, Q.; Evmenenko, G. A.; Dutta, P.; Lee, P.; Armstrong, N. R.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 10227. (d) Veinot, J. G. C.; Marks, T. J. Acc. Chem. Res. 2005, 38, 632. (e) Li, J.; Marks, T. J. Chem. Mater. 2008, 20, 4873. (a) Muller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K. Nature 2003, 421, 829. (b) Bacher, E.; Bayerl, M.; Rudati, P.; Reckefuss, N.; Muller, C. D.; Meerholz, K.; Nuyken, O. Macromolecules 2005, 38, 1640. (c) Gather, M. C.; Kohnen, A.; Falcou, A.; Becker, H.; Meerholz, K. Adv. Funct. Mater. 2007, 17, 191. (d) Zacharias, P.; Gather, M. C.; Rojahn, M.; Nuyken, O.; Meerholz, K. Angew. Chem. Int. Ed. 2007, 46, 4388. (e) Domercq, B.; Hreha, R. D.; Zhang, Y.-D.; Larribeau, N.; Haddock, J. N.; Schultz, C.; Marder, S. R.; Kippelen, B. Chem. Mater. 2003, 15, 1491. (f) Ulbricht, S.; Rehmann, N.; Holder, E.; Hertel, D.; Meerholz, K.; Schubert, U. S. Macromol. Chem. Phys. 2009, 210, 531. (a) Chou, M.-Y.; Leung, M.-K.; Su, Y. O.; Chiang, C. L.; Lin, C.-C.; Liu, J.-H.; Kuo, C.-K.; Mou, C.-Y. Chem. Mater. 2004, 16, 654. (b) Chang, C.-C.; Leung, M.-K. Chem. Mater. 2008, 20, 5816. (c) Xia, C.; Advincula, R. C. Chem. Mater. 2001, 13, 1682. (d) Inaoka, S.; Roitman, D. B.; Advincula, R. C. Chem. Mater. 2005, 17, 6781. (a) Liu, S.; Jiang, X.; Ma, H.; Liu, M. S.; Jen, A. K.-Y. Macromolecules 2000, 33, 3514. (b) Jiang, X.; Liu, S.; Liu, M. S.; Herguth, P.; Jen, A. K.-Y.; Fong, H.; Sarikaya, M. Adv. Funct. Mater. 2002, 12, 745. (c) Niu, Y.; Liu, M. S.; Ka, J.-W.; Jen, A. K.-Y. Appl. Phys. Lett. 2006, 88, 093505. (d) Zhao, J.; Bardecker, J. A.; Munro, A. M.; Liu, M. S.; Niu, Y.; Ding, I.-K.; Luo, J.; Chen, B.; Jen, A. K.-Y.; Ginger, D. S. Nano Lett. 2006, 6, 462. (e) Lim, B.; Hwang, J.-T.; Kim, J. Y.; Ghim, J.; Vak, D.; Noh, Y.-Y.; Lee, S.-H.; Lee, K.; Heeger, A. J.; Kim, D.-Y. Org. Lett. 2006, 8, 4703. (f) Paul, G. K.; Mwaura, J.; Argun, A. A.; Taranekar P.; Reynolds, J. R. Macromolecules 2006, 39, 7789. (a) Niu, Y.-H.; Liu, M. S.; Ka, J.-W.; Bardeker, J.; Zin, M. T.; Schofiled, R.; Chi, Y.; Jen, A. K.-Y. Adv. Mater. 2007, 19, 300. (b) Niu, Y.-H.; Munro, A. M.; Cheng, Y.-J.; Tian, Y.; Zhao, J.; Bardecker, J. A.; Plante, J.-L.; Ginger, D. S.; Jen, A. K.-Y. Adv. Mater. 2007, 19, 3371. (c) Cheng, Y.-J.; Liu, M. S.; Zhang, Y.; Niu, Y.-H.; Huang, F.; Ka, J.-W.; Yip, H.-L.; Jen, A. K.-Y. Chem. Mater. 2008, 20, 413. (d) Liu, M. S.; Niu, Y.-H.; Ka, J.-W.; Yip, H.-L.; Huang, F.; Luo, J.; Kim, T.-D.; Jen, A. K.-Y. Macromolecules 2008, 41, 9570. Huang, F.; Cheng, Y.-J.; Zhang, Y.; Liu, M. S.; Jen, A. K.-Y. J. Mater. Chem. 2008, 18, 4495. (a) Elschner, A.; Bruder, F.; Heuer, H. W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Thurm, S. Synth. Met. 2000, 111, 139. (b) Brown, T. M.; Kim, J. S.; Friend, R. H.; Cacialli, F.; Daik, R.; Feast, W. J. Appl. Phys. Lett. 1999, 75, 1679. Kim, J.-S.; Friend, R. H.; Grizzi, L.; Burroughes, J. H. Appl. Phys. Lett. 2005, 87, 023506. (a) Morgado, J.; Friend, R. H.; Cacialli, F. Appl. Phys. Lett. 2002, 80, 2436. (b) Yan, H.; Scott, B. J.; Huang, Q.; Marks, T. J. Adv. Mater. 2004, 16, 1948. Li, J.; Tobin, J. M. Chem. Mater. 2008, 20, 4873. Bellmann, E.; Shaheen, S. E.; Thayumanavan, S.; Barlow, S.; Grubbs, R. H.; Marder, S. R.; Kippelen, B.; Peyghambarian, N. Chem. Mater. 1998, 10, 1668. Smith, D. W.; Babb, D. A. Macromolecules 1996, 29, 852. (a) Niu, Y.-H.; Tung, Y.-L.; Chi, Y.; Shu, C.-F.; Kim, J. H.; Chen, B.; Luo, J.; Carty, A. J.; Jen, A. K.-Y. Chem. Mater. 2005, 17, 3532. (b) Gong, X.; Moses, D.; Heeger, A. J.; Liu, S.; Jen, A. K.-Y. Appl. Phys. Lett. 2003, 83, 183. (c) Jiang, X.; Liu, S.; Liu, M. S.; Herguth, P.; Jen, A. K.-Y.; Fong, H.; Sarikaya, M. Adv. Funct. Mater. 2002, 12, 745. (d) Liu, S.; Jiang, X.; Ma, H.; Liu, M. S.; Jen, A. K.-Y. Macromolecules 2000, 33, 3514. (e) Jiang, X.; Liu, M. S.; Jen, A. K.-Y. J. Appl. Phys. 2002, 91, 10147. (f) Niu, Y. H.; Chen, B.; Liu, S.; Yip, H.; Bardecker, J.; Jen, A. K.-Y.; Kavitha, J.; Chi. Y.; Shu, C.-F.; Tseng, Y.-H.; Chien, C.-H. Appl. Phys. Lett. 2004, 85, 1619. Chou, C. H.; Shu, C. F. Macromolecules 2002, 35, 9673. Wong, K.-T.; Wang, Z.-J.; Chien, Y.-Y.; Wang, C.-L. Org. Lett. 2001, 3, 2285. Borsenberger, P. M.; Weiss, D. S. Organic Photoreceptors for Imaging Systems, Marcel Dekker, New York, 1993. Borsenberger, P. M.; Pautmeier, L.; Bassler, H. J. Chem. Phys. 1991, 94, 5447. Liao, Y.-L.; Hung, W.-Y.; Hou, T.-H.; Lin, C.-Y.; Wong, K.-T. Chem. Mater. 2007, 19, 6350. (a) Cao, Y.; Yu, G.; Zhang, C.; Menon, R.; Heeger, A. J. Synth. Met. 1997, 87, 171. (b) Berntsen, A.; Croonen, Y.; Liedenbaum, C.; Schoo, H.; Visser, R.-J.; Vleggaar, J.; van de Weijer, P. Opt. Mater. 1998, 9, 125. (a) Khuong, K. S.; Jones, W. H.; Pryor, W. A.; Houk, K. N. J. Am. Chem. Soc. 2005, 127, 1265. (b) Mayo, F. J. Am. Chem. Soc. 1968, 90, 1289. (c) Chong, Y. K.; Rizzardo, E.; Solomon, D. H. J. Am. Chem. Soc. 1983, 105, 7761. Yang, X. H.; Jaiser, F.; Stiller, B.; Neher, D.; Galbrecht, F.; Scherf, U. Adv. Funct. Mater. 2006, 16, 2156. Friedel, B.; Keivanidis, P. E.; Brenner, T. J. K.; Abrusci, A.; McNeill, C. R.; Friend, R. H.; Greenham, N. C. Macromolecules 2009, 42, 6741. Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.; Yonemoto, Y.; Kawami, S.; Imai, K. Appl. Phys. Lett. 1994, 65, 807. Duan, L.; Hou, L.; Lee, T.-W.; Qiao, J.; Zhang, D.; Dong, G.; Wang, L.; Qiu, Y. J. Mater. Chem. 2010, 20, 6392. (a) Jonda, C.; Mayer, A. B. R.; Stolz, U.; Elschner, A.; Karbach, A. J. Mater. Sci. 2000, 35, 5645. (b) Tak, Y.-H.; Kim, K.-B.; Park, H.-G.; Lee, K.-H.; Lee, J.-R. Thin Solid Films 2002, 411, 12. (c) Zhang, X.; Wu, Z.; Wang, D.; Wang, D.; Hou, X. Appl. Surf. Sci. 2009, 255, 7970. Chen, J. P.; Klaerner, G.; Lee, J.-I.; Markiewicz, D.; Lee, V. Y.; Miller, R.D.; Scott, J.C. Synth. Met. 1999, 107, 129. Ma, B.; Kim, B. J.; Poulsen, D. A.; Pastine, S. J.; Frechet, J. M. J. Adv. Funct. Mater. 2009, 19, 1024. Gao, H.; Poulsen, D. A.; Ma, B.; Unruh, D. A.; Zhao, X.; Millstone, J. E.; Frechet, J. M. J. Nano. Lett., 2010, 10, 1440. (a) Reineke, S.; Walzer, K.; Leo, K. Phys. Rev. B 2007, 75, 125328. (b) Baldo, M. A.; Adachi, C.; Forrest, S. R. Phys. Rev. B 2000, 62, 10967. Liao, Y.-L.; Lin, C.-Y.; Wong, K.-T.; Hou, T.-H.; Hung, W.-Y. Org. Lett. 2007, 9, 4511. Ku, S.-Y.; Chi, L.-C.; Hung, W.-Y.; Yang, S.-W.; Tsai, T.-C.; Wong, K.-T.; Chen, Y.-H.; Wu, C.-I. J. Mater. Chem. 2009, 19, 773. Chiang, C.-L.; Wu, M.-F.; Dai, D.-C.; Wen, Y.-S.; Wang, J.-K.; Chen, C.-T. Adv. Funct. Mater. 2005, 15, 231. (a) D'Andrade, B. W.; Forrest, S. R. Adv. Mater. 2004, 16, 1585. (b) Yang, S.; Zhang, X.; Lou, Z.; Hou, Y. Appl. Phys. A 2008, 90, 475. (c) Kulkarni, A. P.; Jenekhe, S. A. J. Phys. Chem. C 2008, 112, 5174 (a) Granlund, T.; Pettersson, L. A. A.; Anderson, M. R.; Inganas, O. J. Appl. Phys. 1997, 81, 8097. (b) Giro, G.; Cocchi, M.; Kalinowski, J.; Marco, P. D.; Fattori, V. Chem. Phys. Lett. 2000, 318, 137. (c) Kalinowski, J.; Cocchi, M.; Marco, P. D; Stampor, W.; Giro, G.; Fattori, V. J. Phys. D: Appl. Phys. 2000, 33, 2379. (d) Jiang, X.; Register, R. A.; Killeen, K. A.; Thompson, M. E.; Pschenitzka, F.; Hebner, T.R.; Sturm, J. C. J. Appl. Phys. 2002, 91, 6717. Chiang, C.-L.; Tseng, S.-M.; Chen, C.-T.; Hsu, C.-P.; Shu, C.-F. Adv. Funct. Mater. 2008, 18, 248. Xu, J.; Wen, L.; Zhou, W.; Lv, J.; Guo, Y.; Zhu, M.; Liu, H.; Li, Y.; Jiang, L. J. Phys. Chem. C 2009, 113, 5924. Wong, K.-T.; Chien, Y.-Y.; Chen, R.-T.; Wang, C.-F.; Lin, Y.-T.; Chiang,H.-H.; Hsieh, P.-Y.; Wu, C.-C.; Chou, C. H.; Su, Y. O.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 2002, 124, 11576. Lin, H.-W.; Lin, C.-L.; Chang, H.-H.; Lin, Y.-T.; Wu, C.-C.; Chen, Y.-M.; Chen, R.-T.; Chien, Y.-Y.; Wong, K.-T. J. Appl. Phys. 2004, 95, 881. Wu, C.-C.; Liu, T.-L.; Hung, W.-Y.; Lin, Y.-T.; Wong, K.-T.; Chen, R.-T.; Chen, Y.-M.; Chien, Y.-Y. J. Am. Chem. Soc. 2003, 125, 3710. Oyamada, T.; Chang, C. H.; Chao, T. C.; Fang, F. C.; Wu, C. C.; Wong, K. T.; Sasabe, H.; Adachi, C. J. Chem. Phys. C 2007, 111, 108. (a) Schenck, G. O.; Wilucki, I. V.; Krauch, C. H. Chem. Ber. 1962, 95, 1409. (b) Lamola, A. A. J. Am. Chem. Soc. 1966, 88, 813. (c) Hasegawa, M.; Suzuku, Y.; Kita, N. Chem. Lett. 1972, 4, 317. (d) Yonezawa, N.; Yoshida, T.; Hasegawa, M. J. Chem. Soc., Perkin Trans. 1 1983, 1083. (a) Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556. (b) Hughes, G.; Bryce, M. R. J. Mater. Chem.2005, 15, 94. Barche, J.; Janietz,s.; Ahles, M.; Schmechel, R.; von Seggern, H. Chem. Mater. 2004, 16, 4286. Thelakkat, M.; Fink, R.; Posch, P.; Ring, J.; Schmidt, H.-W. Polym. Prepr. 1997, 38, 394. Chen, H.-F.; Yang, S.-J.; Tsai, Z.-H.; Hung,W.-Y.; Wang, T.-C.; Wong, K.-T. J. Mater. Chem. 2009, 19, 8112. Hayami, S.; Inoue, K. Chem. Lett. 1999, 7, 545. (a) Shih, H.-T.; Lin, C.-H.; Shih, H.-H.; Cheng, C.-H. Adv. Mater. 2002, 14, 1409. (b) Gao, Z.; Lee, C. S.; Bello, I.; Lee, S. T.; Chen, R.-M.; Luh, T.-Y. Shi, J.; Tang, C. W. Appl. Phys. Lett. 1999, 74, 865. Takizawa, S.-Y.; Montes, V. A.; Anzenbacher, P., Jr. Chem. Mater. 2009, 21, 2452. Pinto, M. R.; Schanze, K. S. Synthesis 2002, 1293. Hoven, C. V.; Garcia, A.; Bazan, G. C.; Nguyen, T.-Q. Adv. Mater. 2008, 20, 3793. (a) Pinto, M. R.; Kristal, B. M.; Schanze, K. S. Langmuir 2003, 19, 6523. (b) Gu, Z.; Bao, Y. J.; Zhang, Y.; Wang, M.; Shen, Q. D. Macromolecules 2006, 39, 3125. (c) Wang, F.; Bazan, G. C. J. Am. Chem. Soc. 2006, 128, 15795. (d) Fan, Q. L.; Zhou, Y.; Lu, X. M.; Hou, X. Y.; Huang, W. Macromolecules 2005, 38, 2927. (a) Gao, Y.; Wang, C. C.; Wang, L.; Wang, H. L. Langmuir 2007, 23, 7760. (b) Kaur, P.; Yue, H.; Wu, M.; Liu, M.; Treece, J.; Xue, C.; Liu, H.; Waldeck, D. H. J. Phys. Chem. B. 2007, 111, 8589. (a) Chen, L.; Xu, S.; McBranch, D.; Whitten, D. J. Am. Chem. Soc. 2000, 122, 9302. (b) Tapia, M. J.; Burrows, H. D.; Valente, A. J. M.; Pradhan, S.; Scherf, P.; Lobo, V. M. M.; Pina, J.; Seixas de Melo, J. J. Phys. Chem. B 2005, 109, 19108. (c) Yang, R.; Garcia, A.; Korystov, D.; Milkhailovsky, A.; Bazan, G. C.; Nguyen, T.-Q. J. Am. Chem. Soc. 2006, 128, 16532. Patil, A. O.; Ikenoue, Y.; Wudl, F.; Heeger, A. J. J. Am. Chem. Soc. 1987, 109, 1858. (a) Sundaresan, N. S.; Basak, S.; Pomerantz, M.; Reynolds, J. R. J. Chem. Soc. Chem. Commun. 1987, 621. (b) Reynolds, J. R.; Sundaresan, N. S.; Pomerantz, M.; Basak, S.; Baker, C. K. J. Electroanal. Chem. Interfacial Electrochem. 1988, 250, 355. Jiang, H.; Taranekar, P.; Reynolds, J. R.; Schanze, K. S. Angew. Chem. Int. Ed. 2009, 48, 4300. (a) Liu, B.; Bazan, G. C. Chem. Mater. 2004, 16, 4467. (b) Liu, B.; Dan, T. T. T.; Bazan, G. C. Adv. Funct. Mater. 2007, 17, 2432. (a) Wu, H.; Huang, F.; Mo, Y.; Yang, W.; Wang, D.; Peng, J.; Cao, Y. Adv. Mater. 2004, 16, 1826. (b) Ma, W.; Iyer, P. K.; Gong, X.; Liu, B.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv. Mater. 2005, 17, 274. (c) Wu, H.; Huang, F.; Peng, J.; Cao, Y. Org. Electron. 2005, 6, 118. (d) Yang, R.; Wu, H.; Cao, Y.; Bazan, G. C. J. Am. Chem. Soc. 2006, 128, 14422. (e) Hoven, C.; Yang, R.; Garcia, A.; Heeger, A. J.; Nguyen, T.-Q.; Bazan, G. C. J. Am. Chem. Soc. 2007, 129, 10976. (f) Garcia, A.; Yang, R.; Jin, Y.; Walker, B.; Nguyen, T.-Q. Appl.Phys. Lett. 2007, 91, 153502. (a) Mwaura, J. K.; Pinto, M. R.; Witker, D.; Ananthakrishnan, N.; Schanze, K. S.; Reynolds, J. R. Langmuir 2005, 21, 10119. (b) Taranekar, P.; Qiao, Q.; Jiang, H.; Ghiviriga, I.; Schanze, K. S.; Reynolds, J. R. J. Am. Chem. Soc. 2007, 129, 8958. (c) Jiang, H.; Zhao, X.; Shelton, A. H.; Lee, S. H.; Reynolds, J. R.; Schanze, K. S. ACS Appl. Mater. Interfaces 2009, 1, 381. (a) Cimrova, V.; Schmidt, W.; Rulkens, R.; Schulze, M.; Meyer, W.; Neher, D. Adv. Mater. 1996, 8, 585. (b) Edman, L.; Pauchard, M.; Liu, B.; Bazan, G. C.; Moses, D.; Heeger, A. J. Appl. Phys. Lett. 2003, 82, 3961. (c) Cheng C. H. W.; Lonergan M. C. J. Am. Chem. Soc., 2004, 126, 10536. (d) Edman, L.; Liu, B.; Vehse, M. Swensen, J.; Bazan, G. C.; Heeger, A. J. J. Appl. Phys. 2005, 98, 044502. (a) Wu, H.; Huang, F.; Mo, Y.; Yang, W.; Wang, D.; Peng, J.; Cao, Y. Adv. Mater. 2004, 16, 1826. (b) Huang, F.; Wu, H.; Wang, D.; Yang, W.; Cao, Y.; Chem. Mater. 2004, 16, 708. (a) Seo, J. H.; Nguyen, T.-Q. J. Am. Chem. Soc. 2008, 130, 10042. (b) Seo, J. H.; Yang, R.; Brzezinski, J. Z.; Walker, B.; Bazan, G. C.; Nguyen, T.-Q. Adv. Mater. 2009, 21, 1006. (a) Hoven, C. V.; Yang, R.; Garcia, A.; Heeger, A. J.; Nguyen, T.-Q.; Bazan, G. C. J. Am. Chem. Soc. 2007, 129, 10976. (b) Hoven, C. V.; Yang, R.; Garcia, A.; Crockett, V.; Heeger, A. J.; Bazan, G. C.; Nguyen, T.-Q. Proc. Natl. Acad. Sci. 2008, 105, 12730. (c) Hoven, C. V.; Peet, J.; Mikhailovsky, A.; Nguyen, T.-Q. Appl. Phys. Lett. 2009, 94, 033301. Schwartz, B. J. Annu. Rev. Phys. Chem. 2003, 54, 141. Garcia, A.; Nguyen, T.-Q. J. Phys. Chem. C 2008, 112, 7054. (a) Blom, P. W. M.; de Jong, M. J. M.; Vleggaar, J. J. M. Appl. Phys. Lett. 1996, 68, 3308. (b) Bozano, L.; Carter, S. A.; Scott, J. C.; Malliaras, G. G.; Brock, P. J. Appl. Phys. Lett. 1999, 74, 1132. (a) Nguyen, T.-Q.; Kwong, R. C.; Thompson, M. E.; Schwartz, B. J. Appl. Phys. Lett. 2000, 76, 2454. (b) Niu, Y.-H.; Hou, Q.; Cao, Y. Appl. Phys. Lett. 2002, 81, 634. (c) Lee, T.-W.; Park, O. O. Adv. Mater. 2000, 12, 801. (d) Kim, J.; Lee, J.; Han, C. W.; Lee, N. Y.; Chung, I.-J. Appl. Phys. Lett. 2003, 82, 4238. (e) Ahn, J. H.; Wang, C.; Widdowson, N. E.; Pearson, C.; Bryce, M. R.; Petty, M. C. J. Appl. Phys. 2005, 98, 054508. (f) Liu, J.; Guo, T.-F.; Yang, Y. J. Appl. Phys. 2002, 91, 1595. (a) Edman, L.; Liu, B.; Vehse, M.; Swensen, J.; Bazan, G. C.; Heeger, A. J. J. Appl. Phys. 2005, 98, 044502. (b) Ortony, J. H.; Yang, R.; Brzezinski, J. Z.; Edman, L.; Nguyen, T.-Q.; Bazan, G. C. Adv. Mater. 2008, 20, 298. (c) Balanda, P. B.; Ramey, M. B.; Reynolds, J. R. Macromolecules 1999, 32, 3970. (a) Strawhecker, K. E.; Manias, E. Macromolecules 2001, 34, 8475. (b) Magonov, S. N.; Reneker, D. H. Annu. Rev. Mater. Sci. 1997, 27, 175. (a) March, J. Advanced Organic Chemistry, Reactions, Mechanisms and Structures, 4th ed.; John Wiley and Sons: New York, 1992; pp 982-999. (b) Burch, R. R.; Manring, L. E. Macromolecules 1991, 24,173. (c) Xie, W.; Gao, Z.; Pan, W.-P.; Hunter, D.; Singh, A.; Vaia, R. Chem. Mater. 2001, 13, 2979. (d) Shavel, A.; Rodryguez-Gonzalez, B.; Pacifico, J.; Spasova, M.; Farle, M.; Liz-Marzan, L. M. Chem. Mater. 2009, 21, 1326. (e) Sawicka, M.; Storoniak, P.; Blazejowski, J.; Rak, J. J. Phys. Chem. A 2006, 110, 5066. (f) Prasad, M. R. R.; Krishnan, K.; Ninan, K. N.; Krishnamurthy, V. N. Thermochim. Acta 1997, 297, 207. (g) Lubkowski, J.; Blazejowski, J. Thermochim. Acta 1990, 157, 259. (a) Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, 1992. (b) Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers; John Wiley and Sons: New York, 1992. (c) Brizzolara, R. A.; Stamper, D. M. Surf. Interface Anal. 2007, 39, 559. Seo, J. H.; Gutacker, A.; Walker, B.; Cho, S.; Garcia, A.; Yang, R.; Nguyen, T.-Q.; Heeger, A. J.; Bazan, G. C. J. Am. Chem. Soc. 2009, 131, 18220. Neef, C. J.; Ferraris, J. P. Macromolecules 2000, 33, 2311. Garcia, A.; Brzezinski, J. Z.; Nguyen, T.-Q. J. Phys. Chem. C 2009, 113, 2950. Huang, F.; Wang, X.; Wang, D.; Yang, W.; Cao, Y. Polymer 2005, 46, 12010. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48736 | - |
dc.description.abstract | 1. 以旋環雙芴為主體材料之光電應用
以旋環雙芴為主體的寡聚合物或高分子材料,近年來常被應用於有機光電材料之研究中。本論文裡我們在其2,2'的位置引入左右不對稱之取代基團,此兩相正交相互獨立的共軛鏈,除可避免分子堆疊外,更使欲設計之分子具光學異構物之特質。首先,我們將帶有二羫基之旋環雙芴與拆旋試劑作用,可分離出左旋之(S)-BrSOH及右旋之(R)-BrSOH,最後再引入發光基團pyrene,即可合成出具有旋極化放光之發光材料 (glum ~ 0.001)。此外,在此正交之旋環雙芴核心架構下,我們引入推拉電子基團,使兩兩錨定基團之距離為10.05 A,讓其能夠以類似N719 的雙牙基形式緊緊吸附於TiO2上,提高吸附率,進而達到高效率之染料光敏化太陽能電池 (3.75%)。最後,我們更將左右不對稱之推拉旋環雙芴衍生物 (CN1) 吸附在金的電極表面進行電聚合反應,藉由調控電化學沉積之週期來修飾金電極表面之功函數。 2. 濕式製程有機發光二極體材料之開發探究 相較於真空沉積技術,濕式製程具有製備簡單及成本低廉的特性,可望成為下一代OLEDs面板的主流。因此,本論文構想即針對如何克服薄膜材料對塗佈或噴印溶劑的穩定性問題加以探討,並進一步瞭解其複雜的介面關係。其中我們所開發之新型交聯式材料及離子性電子傳輸材料便可有效克服溶劑侵蝕或混合到前一層薄膜材料之問題。首先,我們合成出一系列熱聚型電洞注入材料、電洞傳輸材料、發光材料及電子傳輸材料。此類材料塗佈於基板後,可經由交聯聚合反應以達到抗溶劑侵蝕的效果。其中,熱聚型電洞傳輸材料具有相當高的穩定度及載子傳導特性 (大約 10-4 cm2 V-1 s-1)。原子力顯微鏡則進一步提供我們熱聚分子薄膜形貌的資訊,對於我們在聚合材料評估、開發及元件應用可做完整且有系統的研究。最後,離子性電子傳輸材料可藉由溶劑極性之不同,成功塗佈並製備多層式OLED元件。我們更針對其側鏈取代離子之不同,量測其電荷傳導特性及元件表現。另外,退火對於離子性共軛高分子之影響,可藉由Hofmann elimination來解釋側鏈離子之脫附。其操作機制可以由電子傳輸層之厚度及離子密度來加以調控。 | zh_TW |
dc.description.abstract | 1. Spirobifluorene-Based Materials for Optoelectronic Applications
Recently, molecules possessing a 9,9'-spirobifluorene core are used widely in organic optoelectronics. In this dissertation, different functional groups were introduced to form 2,2'-A,7,7'-B-substituted spirobifluorene (left-right asymmetric). The bridging of two chromophores perpendicularly via a sp3-hybridized atom into a spiro configuration hinders the aggregation between molecules. In addition, optically active enantiomer is possible to obtain in the left-right asymmetric system. First, (S)-BrSOH and (R)-BrSOH were resolved by clathrate formation between racemic dissymmetric 2,2'-dihydroxy-7,7'-dibromo-9,9'-spirobifluorene and the resolving reagent. New enantiomerically pure spiro compounds bearing pyrene moieties were synthesized and capable of preferentially absorbing and emitting circularly polarized light (glum ~ 0.001). Second, a new dye (SSD1) featuring two donor/acceptor chromophores aligned in a spiro configuration with two anchoring groups separated at a distance of 10.05 A (closely matching the distance between the adsorption sites of the anatase TiO2 surface) undergoes efficient dye adherence on TiO2 films. A dye-sensitized solar cell incorporating SSD1 exhibited a power conversion efficiency of 3.75%. Third, spirobifluorene-based donor (triphenylamine)–acceptor (cyano) bipolar systems has been investigated. Organic films (CN1) were formed on gold electrode by electrochemical polymerization. The gold surface work function can be changed over more than 0.4 eV depending on the numbers of electrochemical deposition cycles. 2. Development of All Solution-Processed Multilayer Organic Light-Emitting Diodes (OLEDs) Compared to vacuum deposition technique, solution-based deposition is more attractive for next generation OLEDs because of the simple process and low instrumental cost. The overall theme of this dissertation is to overcome the difficulty in achieving purely all-solution processing multiple-layer OLEDs and understanding the resulting complex interfaces. In order to alleviate the interfacial mixing problem, two promising approaches are investigated here. The first approach is the use of an organic-soluble precursor that becomes insoluble through crosslinkable reactions. With such a concept, thermally crosslinkable hole injection materials (HIMs) and/or hole transport materials (HTMs), emitting materials (EMs), and electron transport materials (ETMs) were designed and synthesized. These crosslinked HTMs, studied using time-of-flight techniques, exhibited remarkable stability and non-dispersive hole transport properties, with values of | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T07:11:09Z (GMT). No. of bitstreams: 1 ntu-99-F94223012-1.pdf: 15894753 bytes, checksum: 5b544618e9da25cff02d1d3549a67627 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | Part I Spirobifluorene-Based Materials for Optoelectronic Applications
1 Spirobifluorene-Based Materials for Optoelectronic Applications 1 1.1 Introduction 1 1.1.1 Spirobifluorene with Asymmetric Substitution Patterns on the Fluorene Units 2 1.1.2 Optoelectronic Applications of Spirobifluorene-Based Materials 4 1.2 Chiral 2,2',7,7'-Substituted Spirobifluorenes and Their Chiroptical Properties 8 1.3 Spirobifluorene Derivative for Dye-Sensitized Solar Cell Application 22 1.4 Engineering of Gold Surface Work Function by Electrodeposition of Spirobifluorene Donor-Acceptor Bipolar Systems 34 1.5 Conclusions 52 1.6 Experimental details 54 1.7 References 68 Part II Development of All Solution-Processed Multilayer Organic Light-Emitting Diodes (OLEDs) 2 Crosslinkable Organic Materials for Use in Organic Light-Emitting Diodes 75 2.1 Introduction 75 2.1.1 Multilayer Structure of OLED Device 76 2.1.2 Deposition of Organic Layer 77 2.1.3 Multiple-Layer Deposition from Solution 79 2.2 Thermally Crosslinkable Hole Transport Materials 83 2.2.1 Trifluorovinyl Ether-Based Hole Transport Materials 86 2.2.2 Styrene-Based Hole Transport Materials 97 2.3 Thermally Crosslinkable Hole Injection Materials 108 2.4 Thermally Crosslinkable Emitting Materials 122 2.5 Thermally Crosslinkable Electron Transport Materials 148 2.6 Conclusions 156 2.7 Experimental details 158 2.8 References 183 3 Structure-Function-Property Relationships in Conjugated Polyelectrolytes 191 3.1 Introduction 191 3.2 Charge Reversal in CPEs Electron Injection Layers: Cationic versus Anionic 195 3.3 Effect of Thermal Annealing on Polymer Light-Emitting Diodes Utilizing Cationic Conjugated Polyelectrolytes as Electron Injection Layers 201 3.4 Conclusions 208 3.5 Experimental details 209 3.6 References 210 Appendix A 1H and 13C NMR Spectra 215 Appendix B TGA and DSC Analyses of 4C6-T3 243 Appendix C X-Ray Crystallography Data 245 | |
dc.language.iso | zh-TW | |
dc.title | 旋環雙芴衍生物與濕式製程有機發光二極體材料之開發探究及其光電應用 | zh_TW |
dc.title | Development and Optoelectronic Applications of Spirobifluorene-Based Materials and Solution-Processable OLEDs Materials | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 洪文誼,蘇海清,林建村,周必泰 | |
dc.subject.keyword | 旋環雙芴,光電應用,濕式製程,有機發光二極體,聚合反應, | zh_TW |
dc.subject.keyword | Spirobifluorene,Optoelectronic Applications,Solution-Process,Organic Light-Emitting Diodes,Polymerizable Reactions, | en |
dc.relation.page | 257 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-10-12 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 15.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。