請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48734完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾國藩 | |
| dc.contributor.author | Wen-Chieh Liao | en |
| dc.contributor.author | 廖文潔 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:11:02Z | - |
| dc.date.available | 2012-03-03 | |
| dc.date.copyright | 2011-03-03 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-10-12 | |
| dc.identifier.citation | Ahn H, Fehlings MG (2008) Prevention, identification, and treatment of perioperative spinal cord injury. Neurosurg Focus 25:E15.
Aigner A, Brachmann P, Beyer J, Jager R, Raulais D, Vigny M, Neubauer A, Heidenreich A, Weinknecht S, Czubayko F, Zugmaier G (2003) Marked increase of the growth factors pleiotrophin and fibroblast growth factor‐2 in serum of testicular cancer patients. Ann Oncol 14:1525‐1529. Akeda K, Hirata H, Matsumoto M, et al. (2006) Regeneratingaxons emerge far proximal to the coaptation site in end-to-sidenerve coaptation without a perineurial window using a T-shaped chamber. Plast Reconstr Surg 117, 1194–1203. Baichwal RR, Bigbee JW, DeVries GH (1988) Macrophage‐mediated myelin‐related mitogenic factor for cultured Schwann cells. Proc Natl Acad Sci U S A 85:1701‐1705. Bao F, Chen Y, Dekaban GA, Weaver LC (2004) Early anti‐inflammatory treatment reduces lipid peroxidation and protein nitration after spinal cord injury in rats. J Neurochem 88:1335‐1344. Bareyre FM, Haudenschild B, Schwab ME (2002) Long‐lasting sprouting and gene expression changes induced by the monoclonal antibody IN‐1 in the adult spinal cord. J Neurosci 22:7097‐7110. Becker KW, Kienecker EW, Andrae I (1987) Effect of locally applied corticoids on the morphology of peripheral nerves following neurotmesis and microsurgical suture. Neurochirurgia (Stuttg) 30:161‐167. Beris A, Lykissas M, Korompilias A, et al. (2007) End-to-side nerverepair in peripheral nerve injury. J Neurotrauma 24, 909–916. Bertelli JA, Mira JC (1993) Behavioral Evaluating Methods in the Objective Clinical Assessment of Motor Function after Experimental Brachial Plexus Reconstruction in the Rat. J Neurosci Methods 46:203-208. Bertelli JA, Mira JC (1993) Nerve repair using freezing and fibrin glue: immediate histologic improvement of axonal coaptation. Microsurgery 14, 135–140. Bertelli JA, dos Santos AR, Calixto JB (1996) Is axonal sprouting able to traverse the conjunctival layers of the peripheral nerve? A behavioral, motor, and sensory study of end-to-side nerve anastomosis. J Reconstr Microsurg 12, 559–563. Bertelli JA, Ghizoni MF (2006) Concepts of nerve regeneration and repair applied to brachial plexus reconstruction. Microsurgery 26, 230–244. Beuche W, Friede RL (1984) The role of non‐resident cells in Wallerian degeneration. J Neurocytol 13:767‐796. Blondet B, Carpentier G, Lafdil F, Courty J (2005) Pleiotrophin cellular localization in nerve regeneration after peripheral nerve injury. J Histochem Cytochem 53:971‐977. Brenneman DE, Schultzberg M, Bartfai T, Gozes I (1992) Cytokine regulation of neuronal survival. J Neurochem 58:454‐460. Chen JR, Wang YJ, Tseng GF (2003) The effect of epidural compression on cerebral cortex: a rat model. J Neurotrauma 20, 767–780. Chen B, Song Y, Liu Z (2009) Promotion of nerve regeneration in peripheral nerve by short-course FK506 after end-to-sideneurorrhaphy. J Surg Res 152, 303–310. Chuang TY, Chiu FY, Tsai YA, et al. (2002) The comparison of electrophysiologic findings of traumatic brachial plexopathies in a tertiary care center. Injury 33, 591–595. Crews LL, Wigston DJ (1990) The dependence of motoneuronson their target muscle during postnatal development of the mouse. J Neurosci 10, 1643–1653. DeLeo JA, Colburn RW, Rickman AJ (1997) Cytokine and growth factor immunohistochemical spinal profiles in two animal models of mononeuropathy. Brain Res 759:50‐57. Dojcinovic I, Richter M (2008) Mucormycoses: serious complication of high‐dose corticosteroid therapy for traumatic optic neuropathy. Int J Oral Maxillofac Surg 37:391‐394. Donato R (1999) Functional roles of S100 proteins, calcium‐binding proteins of the EF‐hand type. Biochim Biophys Acta 1450:191‐231. Dykes RW, Terzis JK (1981) Spinal nerve distributions in the upper limb: the organization of the dermatome and afferent myotome. Philos Trans R Soc Lond B Biol Sci 293:509-554. Emery DL, Royo NC, Fischer I, Saatman KE, McIntosh TK (2004) Plasticity following injury to the adult central nervous system: is recapitulation of a developmental state worth promoting? J Neurotrauma 20:1271-1292. Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 209:294‐301 Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175-191. Fortes WM, Noah EM, Liuzzi FJ, et al. (1999) End-to-side neurorrhaphy: evaluation of axonal response and upregulation of IGF-I and IGF-II in a non-injury model. J Reconstr Microsurg 15, 449–457. Guo S, Han Y, Zhang X, Lu B, Yi C, Zhang H, Ma X, Wang D, Yang L, Fan X, Liu Y, Lu K, Li H (2008) Human facial allotransplantation: a 2‐year follow‐up study. Lancet 372:631‐638. Guntinas-Lichius O, Hundeshagen G, Paling T, et al. (2007) Impact of different types of facial nerve reconstruction on the recovery of motor function: an experimental study in adult rats. Neurosurgery 61, 1276–1283. Discussion 1283–5. Hall ED, Springer JE (2004) Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx 1:80‐100. Hattori T, Matsuyama Y, Sakai Y, Ishiguro N, Hirata H, Nakamura R (2008) Chondrotinase ABC enhances axonal regeneration across nerve gaps. J Clin Neurosci 15:185‐191. Hayashi A, Yanai A, Komuro Y, et al. (2004) Collateral sprouting occurs following end-to-side neurorrhaphy. Plas Reconstr Surg 116, 129–137. Hayashi A, Pannucci C, Moradzadeh A, et al. (2008) Axotomy orcompression is required for axonal sprouting following end-to-side neurorrhaphy. Exp Neurol 211, 539–550. Horstmann M, Neumaier‐Probst E, Lukacs Z, Steinfeld R, Ullrich K, Kohlschutter A (2003) Infantile cobalamin deficiency with cerebral lactate accumulation and sustained choline depletion. Neuropediatrics 34:261‐264. Hui AC, Wong S, Leung CH, Tong P, Mok V, Poon D, Li‐Tsang CW, Wong LK, Boet R (2005) A randomized controlled trial of surgery vs steroid injection for carpal tunnel syndrome. Neurology 64:2074‐2078. Inciong JGB, Marrocco WC, Terzis JK (2000) Efficacy of intervention strategies in a Brachial Plexus Global Avulsion Model in the Rat. Plast Reconstr Surg 105:2059-2071. Izumi Y, Kaji R (2007) Clinical trials of ultra‐high‐dose methylcobalamin in ALS. Brain Nerve 59:1141‐1147. Jablecki CK (1999) Lateral antebrachial cutaneous neuropathy in a windsurfer. Muscle Nerve 22:944‐945. Johnson WE, Patterson AM, Eisenstein SM, Roberts S (2007) The presence of pleiotrophin in the human intervertebral disc is associated with increased vascularization: an immunohistologic study. Spine 32:1295‐1302. Kanje M, Arai T, Lundborg G (2000) Collateral sprouting from sensory and motor axons into an end to side attached nerve segment. Neuroreport 11, 2455–2459. Kong X, Sun X, Zhang J (2004) The protective role of Mecobalamin following optic nerve crush in adult rats. Eye Sci 20:171‐177. Liao WC, Chen JR, Wang YJ, Tseng GF (2009) The efficacy of end‐to‐end and end‐to‐side nerve repair (neurorrhaphy) in the rat brachial plexus. J Anat 215:506‐521. Liu CL, Wang YJ, Chen JR, et al. (2002) Parvalbumin-containing neurons mediate the feedforward inhibition of rat rubrospinal neurons. Anat Embryol 205, 245–254. Liu PH, Yang LH, Wang TY, et al. (2006) Proximity of lesioning determines response of facial motoneurons to peripheral axotomy. J Neurotrauma 23, 1857–1873. Lovblad K, Ramelli G, Remonda L, Nirkko AC, Ozdoba C, Schroth G (1997) Retardation of myelination due to dietary vitamin B12 deficiency: cranial MRI findings. Pediatr Radiol 27:155‐158. Lundborg G (2005). Nerve Injury and Repair. Edinburgh:Churchill Livingstone. Lutz BS, Chuang DC, Hsu JC, et al. (2000) Selection of donor nerves – an important factor in end-to-side neurorrhaphy. Br J Plast Surg 53, 149–154. Lykissas MG, Sakellariou E, Vekris MD, et al. (2007) Axonal regeneration stimulated by erythropoietin: an experimental study in rats. J Neurosci Methods 164, 107–115. Matsumoto M, Hirata H, Nishiyama M, et al. (1999) Schwann cells can induce collateral sprouting from intact axons: experimental study of end-to-side neurorrhaphy using a Ychamber model. J Reconstr Microsurg 15, 281–286. McCallister WV, Tang P, Smith J, et al. (2001) Axonal regeneration stimulated by the combination of nerve growth factor and ciliary neurotrophic factor in an end-to-side model. J Hand Surg [Am] 26, 478–488. Mi R, Chen W, Hoke A (2007) Pleiotrophin is a neurotrophic factor for spinal motor neurons. Proc Natl Acad Sci U S A 104:4664‐4669. Miani N, De Renzis G, Michetti F, Correr S, Olivieri Sangiacomo C, Caniglia A (1972) Axonal transport of S‐100 protein in mammalian nerve fibers. J Neurochem 19:1387‐1394. Mikhailov VV, Avakumov VM (1983) Mechanism of the effect of methylcobalamin on the recovery of neuromuscular functions in mechanical and toxin denervation. Farmakol Toksikol 46:9‐12. Nachemson AK, Lundborg G, Myrhage R, Rank F (1985) Nerve regeneration and pharmacological suppression of the scar reaction at the suture site. An experimental study on the effect of estrogen‐progesterone, methylprednisolone‐acetate and cis‐hydroxyproline in rat sciatic nerve. Scand J Plast Reconstr Surg 19:255‐260. Nagano A (1998) Treatment of brachial plexus injury. J Orthop Sci 3:71‐80. Oberlin C, Beal D, Leechavengvongs S, Salon A, Dauge MC, Sarcy JJ (1994) Nerve transfer to biceps muscle using a part of ulnar nerve for C5‐C6 avulsion of the brachial plexus: anatomical study and report of four cases. J Hand Surg [Am] 19:232‐237. Oberlin C, Beal D, Leechavengvongs S, et al. (1994) Nerve transfer to biceps muscle using a part of ulnar nerve for C5-C6 avulsion of the brachial plexus: anatomical study and report of four cases. J Hand Surg [Am] 19, 232–237. Okada K, Tanaka H, Temporin K, Okamoto M, Kuroda Y, Moritomo H, Murase T, Yoshikawa H (2010) Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model. Exp Neurol 222:191-203. Peng HB, Ali AA, Dai Z, Daggett DF, Raulo E, Rauvala H (1995) The role of heparin‐binding growth‐associated molecule (HB‐GAM) in the postsynaptic induction in cultured muscle cells. J Neurosci 15:3027‐3038. Perez‐Pinera P, Berenson JR, Deuel TF (2008) Pleiotrophin, a multifunctional angiogenic factor: mechanisms and pathways in normal and pathological angiogenesis. Curr Opin Hematol 15:210‐214. Qian SL, Chen AM (2008) Advancement in drug therapy of spinal cord injury. Zhongguo Gu Shang 21:164‐166. Reyes‐Garcia G, Caram‐Salas NL, Medina‐Santillan R, Granados‐Soto V (2004) Oral administration of B vitamins increases the antiallodynic effect of gabapentin in the rat. Proc West Pharmacol Soc 47:76‐79. Rhode BM, Tamin H, Gilfix BM, Sampalis JS, Nohr C, MacLean LD (1995) Treatment of Vitamin B12 Deficiency after Gastric Surgery for Severe Obesity. Obes Surg 5:154‐158. Sakakima H, Yoshida Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T (2004) Midkine expression in rat spinal motor neurons following sciatic nerve injury. Brain Res Dev Brain Res 153:251‐260. Samal F, Haninec P, Raska O, et al. (2006) Quantitative assessment of the ability of collateral sprouting of the motor and primary sensory neurons after the end-to-side neurorrhaphy of the rat musculocutaneous nerve with the ulnar nerve. Ann Anat 188, 337–344. Sanapanich K, Morrison WA, Messina A (2002) Physiologic and morphologic aspects of nerve regeneration after end-to-end or end-to-side coaptation in a rat model of brachial plexus injury. J Hand Surg Am 27:133-142. Sasaki H, Matsuzaki Y, Meguro K, Ikarashi Y, Maruyama Y, Yamaguchi S, Sekizawa K (1992) Vitamin B12 improves cognitive disturbance in rodents fed a choline‐deficient diet. Pharmacol Biochem Behav 43:635‐639. Sato Y, Honda Y, Iwamoto J, Kanoko T, Satoh K (2005) Amelioration by mecobalamin of subclinical carpal tunnel syndrome involving unaffected limbs in stroke patients. J Neurol Sci 231:13‐18. Scalabrino G, Buccellato FR, Veber D, Mutti E (2003) New basis of the neurotrophic action of vitamin B12. Clin Chem Lab Med 41:1435‐1437. Schmalbruch H (1987) Loss of sensory neurons after sciatic nerve section in the rat. Anat Rec 219, 323–329. Sherren J (1906) The distribution and recovery of peripheral nerves studied from instances of division in man, Lancet 1: 723–727. Stefansson K, Wollmann R, Jerkovic M (1982) S‐100 protein in soft‐tissue tumors derived from Schwann cells and melanocytes. Am J Pathol 106:261‐268. Sinis N, Guntinas-Lichius O, Irintchev A, Skouras E, Kuerten S, Pavlov SP, Schaller HE, Dunlop SA, Angelov DN (2008) Manual stimulation of forearm muscles does not improve recovery of motor function after injury to a mixed peripheral nerve. Exp Brain Res 185:469-483. Stoll G, Muller HW (1999) Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathol 9, 313–325. Streppel M, Azzolin N, Dohm S, Guntinas-Lichius O, Haas C, Grothe C, Wevers A, Neiss WF, Angelov DN (2002) Focal application of neutralizing antibodies to soluble neurotrophic factors reduces collateral axonal branching after peripheral nerve lesion. Eur J Neurosci 15:1327-1342. Tham SK, Morrison WA (1998) Motor collateral sprouting through an end-to-side nerve repair. J Hand Surg [Am] 23, 844–851. Tseng GF, Lan CT, Shieh JY, et al. (1996) Tracing in living CNS tissue slices with dextran. Neurosci Protoc 50, 1–13. Tung TH, Novak CB, Mackinnon SE (2003) Nerve transfers to the biceps and brachialis branches to improve elbow flexion strength after brachial plexus injuries. J Neurosurg 98, 313–318. Ulkur E, Yuksel F, Acikel C, et al. (2003) Comparison of functional results of nerve graft, vein graft, and vein filled with muscle graft in end-to-side neurorrhaphy. Microsurgery 23, 40–48. Vasilescu C, Florescu A (1982) Peripheral neuropathy with a syndrome of continuous motor unit activity. J Neurol 226:275‐282. Viterbo F, Trindade JC, Hoshino K, et al. (1992) Latero-terminal neurorrhaphy without removal of the epineural sheath. Experimental study in rats. Rev Paul Med 110, 267–275. Viterbo F, Trindade JC, Hoshino K, et al. (1994) End-to-side neurorrhaphy with removal of the epineurial sheath: an experimental study in rats. Plast Reconstr Surg 94, 1038–1047. Wakakura M, Ishikawa S, Oono S, Tabuchi A, Kani K, Tazawa Y, Nakao Y, Kiyosawa M, Kawai K, Oohira A, et al. (1995) Incidence of acute idiopathic optic neuritis and its therapy in Japan. Optic Neuritis Treatment Trial Multicenter Cooperative Research Group (ONMRG). Nippon Ganka Gakkai Zasshi 99:93‐97. Wakakura M, Mashimo K, Oono S, Matsui Y, Tabuchi A, Kani K, Shikishima K, Kawai K, Nakao Y, Tazawa Y, Kiyosawa M, Abe H, Ohba N, Yago K, Maeda S, Sugita M, Ishikawa S (1999) Multicenter clinical trial for evaluating methylprednisolone pulse treatment of idiopathic optic neuritis in Japan. Optic Neuritis Treatment Trial Multicenter Cooperative Research Group (ONMRG). Jpn J Ophthalmol 43:133‐138. Wang YJ, Ho HW, Tseng GF (2000) Fate of the supraspinal collaterals of cord-projection neurons following upper spinal axonal injury. J Neurotrauma 17, 231–241 Watanabe T, Kaji R, Oka N, Bara W, Kimura J (1994) Ultra‐high dose methylcobalamin promotes nerve regeneration in experimental acrylamide neuropathy. J Neurol Sci 122:140‐143. Weir DG, Scott JM (1995) The biochemical basis of the neuropathy in cobalamin deficiency. Baillieres Clin Haematol 8:479‐497. Yagihashi S, Tokui A, Kashiwamura H, Takagi S, Imamura K (1982) In vivo effect of methylcobalamin on the peripheral nerve structure in streptozotocin diabetic rats. Horm Metab Res 14:10‐13. Yamatsu K, Kaneko T, Kitahara A, Ohkawa I (1976) Pharmacological studies on degeneration and regeneration of peripheral nerves. (1) Effects of methylcobalamin and cobamide on EMG patterns and loss of muscle weight in rats with crushed sciatic nerve. Nippon Yakurigaku Zasshi 72:259‐268. Yamazaki K, Oda K, Endo C, Kikuchi T, Wakabayashi T (1994) Methylcobalamin (methyl‐B12) promotes regeneration of motor nerve terminals degenerating in anterior gracile muscle of gracile axonal dystrophy (GAD) mutant mouse. Neurosci Lett 170:195‐197. Zhang Z, Johnson EO, Vekris MD, et al. (2006) Long-term evaluation of rabbit peripheral nerve repair with end-to-side neurorrhaphy in rabbits. Microsurgery 26, 245–252. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48734 | - |
| dc.description.abstract | 臂神經叢損傷為常見的上肢神經傷害,臨床上多利用神經轉移手術助其恢復功能。本研究以大鼠尺神經為捐贈者,肌皮神經為接受者,探討end-to-end neurorrhaphy (EEN) 和end-to-side neurorrhaphy (ESN)兩種臂神經叢修復術的效果。EEN組的捐贈神經以截斷的方式與肌皮神經點對點接合;ESN組之捐贈神經則於神經外膜切口,以利肌皮神經吻合。
實驗結果顯示EEN手術3-4個月後,再生的軸突直徑變粗並恢復至正常大小、神經再支配運動終板的密度恢復至正常值;而ESN手術後6個月,再生軸突仍較正常組細,神經再支配運動終板的比例仍低。另一方面,電生理檢查顯示EEN手術3個月後,刺激修復位置上方的神經時,大鼠的二頭肌複合肌肉動作電位振幅高、傳導潛期 (delay) 短;而ESN術後6個月的大鼠的複合肌肉動作電位振幅則仍無法恢復至正常值。行為測試上,EEN手術後3個月及ESN術後6個月,大白鼠之梳洗行為測試 (grooming test)結果皆恢復正常,但EEN組動物功能復原較快。 然而臨床上最重要大的關鍵在於受傷後再生神經纖維需要長的距離、導引與支持神經纖維生長的環境。因此我們接著探討外加促進神經再生的藥物如甲基鈷胺 (methylcobalamin)、類固醇藥(methylprednisolone) 及血管生長因子(pleiotrophin)等是否能增進恢復的速度,我們以既有的系統,亦即同樣以尺神經-肌皮神經EEN的接合模式來加以探討。評估外加PBS, methylcobalamin、methylprednisolone, pleiotrophin以及同時外加methylcobalamin與pleiotrophin等五種方式加以評估。結果顯示這三種藥物皆不影響術後運動神經元中表現與生長相關的蛋白GAP-43之情形。觀察EEN接合手術後一個月的動物,顯示外加methylprednisolone抑制了受傷運動神經元細胞體周圍神經膠細胞活化的反應 (perineuronal glial reaction) 與軸突旁巨噬細胞增生等發炎反應,但伴有暫時性壓抑神經再生的狀況。而外加pleiotrophin則如預期的增加血管的密度與再生神經的數量。methylcobalamin促使再生神經纖維的直徑及髓鞘明顯增厚、史旺氏細胞增生,複合肌肉動作電位振幅大幅上升;methylcobalamin與pleiotrophin併用組也有相同的結果。這個結果顯示methylcobalamin能有效的加速受傷神經在EEN接合後的恢復:一個月後就能恢復到與PBS組三個月的情形相當。綜合這些結果,methylcobalamin促進EEN神經接合術後的神經再生的效用最為明顯。本研究的結果顯示,EEN術後,可以考慮給予methylcobalamin來促進修復的周邊神經的復原。 | zh_TW |
| dc.description.abstract | Injury to peripheral nerves often resorts to nerve transfer for restoring function. Here we evaluated the efficacy of end-to-end (EEN) and end-to-side neurorrhaphy (ESN) of rat musculocutaneous nerve, the recipient, to ulnar nerve, the donor. The donor was transected for EEN and exposed an epineurial window for ESN of the recipient.
In EEN, regenerating axons started thick and regained control diameters in 3–4 months while ESN induced slow sprouting of mostly thin collaterals that barely approached control diameters by 6 months. Motor end plates regained control density 4 months following EEN but remained low by 6 months after ESN. The short-latency compound muscle action potential typical of control was quickly restored at 3 months following nerve reconnection. On the other hand, the responses of the ESN started with low amplitude and variable latencies and failed to regain control sizes even by 6 months after surgery Grooming test scores, nevertheless, recovered successfully in both the 3 month-EEN and the 6 month-ESN groups. In short, both neurorrhaphies resulted in functional recovery but EEN appeared quicker and better at the expense of donor function. Since the distance that the regenerating axons have to travel remains as the key determinant, we then explored whether regeneration/myelination-enhancing agent- methylcobalamin, anti-inflammatory drug- methylprednisolone, and neurite growth-enhancing and angiogenic factor- pleiotrophin accelerated the recovery following neurorrhaphy. We explored the administration of PBS, methylcobalamin, methylprednisolone and pleiotrophin alone and combined administration methylcobalamin and pleiotrophin on the same rat ulno-musculocutaneous nerve EEN model that we described above. None of the three drugs applied affected the expression of the neurite-growth associated protein GAP-43 demonstrating that they did not interfere with the regenerating attempt of the injured cell bodies. As expected, methylprednisolone suppressed the perineuronal microglial reaction, periaxonal ED-1 expression and resulted in transiently suppression of the enumeration of regenerated axons and pleiotrophin increased the blood vessel density and nerve fiber densities in the reconnected nerve. Interestingly, methylcobalamin was found to enhance the recovery of compound muscle action potentials and augmented the diameters and myelin thicknesses of the regenerated axons and enhance the expression of S100(+) in Schwann cells 1 month following EEN. Simultaneous methylcobalamin and pleiotrophin treatment resulted in quick and persistent supernumerary reinnervation but failed to enhance the recovery over that of the former alone. In conclusion, methylcobalamin may be preferred over methylprednisolone to facilitate the recovery of peripheral nerves following end-to-end neurorrhaphy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:11:02Z (GMT). No. of bitstreams: 1 ntu-99-D93446005-1.pdf: 4174439 bytes, checksum: 98bc9eb7470265eb0d14977d599cd995 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要 3
Abstract 5 Part I: The efficacy of end-to-end and end-to-side nerve repair (neurorrhaphy) in injured rat brachial plexus nerves 8 Introduction 8 Materials and Methods 16 Results 25 Discussion 34 Part II: Methylcobalamin, but not methylprednisolone or pleiotrophin, greatly accelerates the recovery of rat brachial plexus nerve following end-to-end neurorrhaphy 45 Materials and Methods 45 Results 52 Discussion 60 References 68 Tables and Figures 82 | |
| dc.language.iso | en | |
| dc.subject | 臂神經叢損傷 | zh_TW |
| dc.subject | 神經接合術 | zh_TW |
| dc.subject | brachial plexus injury | en |
| dc.subject | neurorrhaphy | en |
| dc.title | 神經接合術於大鼠臂神經叢損傷修補之研究 | zh_TW |
| dc.title | An investigation of the recovery following end-to-end and end-to-side neurorrhaphy in rat brachial plexus injury | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王曰然,陳建榮,王慈娟,黃敏銓 | |
| dc.subject.keyword | 神經接合術,臂神經叢損傷, | zh_TW |
| dc.subject.keyword | neurorrhaphy,brachial plexus injury, | en |
| dc.relation.page | 139 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-10-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨生物細胞學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
