Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48728
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫啟光(Chi-Kuang Sun)
dc.contributor.authorYu-Chieh Wenen
dc.contributor.author溫昱傑zh_TW
dc.date.accessioned2021-06-15T07:10:42Z-
dc.date.available2013-10-22
dc.date.copyright2010-10-22
dc.date.issued2010
dc.date.submitted2010-10-15
dc.identifier.citationChapter 1
1. D. Royer and E. Dieulesaint, Elastic Waves in Solids II. (Springer, New York, 2000).
2. C. L. Foden, et. al., Phys. Rev. A 62, 011803(R) (2000).
3. A. Tan et. al., Ultrasound Obstet. Gynecol. 20, 192 (2002).
4. M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, Phys. Rev. Lett. 89, 227402 (2002).
5. O. L. Muskens, A. V. Akimov, and J. I. Dijkhuis, Phys. Rev. Lett. 92, 035503 (2004).
6. M. R. Armstrong, E. J. Reed, K.-Y. Kim, J. H. Glownia,W. M. Howard, E. L. Piner, and John C. Roberts, Nat. Phys. 5, 285 (2009).
7. Link K. Katayama, H. Inoue, H. Sugiya, Q. Shen, T. Toyoda, and K. A. Nelson, Appl. Phys. Lett. 92, 031906 (2008).
8. P. L. Kapitza, J. Phys. (Moscow) 4, 181 (1941)
9. I. M. Khalatnikov, J. Exp. Theor. Phys. (USSR), 20, 687 (1952).
10. J. Weber, W. Sandmann, W. Dietsche, and H. Kinder, Phys. Rev. Lett. 40, 1469 (1978).
11. E. T. Swartz, Ph.D. thesis (Cornell University, 1987).
12. G. A. Northrop and J. P. Wolfe, Phys. Rev. Lett. 52, 2156 (1984).
13. C. Hoss, J. P. Wolfe, and H. Kinder, Phys. Rev. Lett. 64, 1134 (1990).
14. P. Taborek and D. L. Goodstein, Phys. Rev. B 22, 1550 (1980).
15. H. Kinder and W. Dietsche, Phys. Rev. Lett. 33, 578 (1974).
16. G. Chen, Phys. Rev. B 57, 14958 (1998).
17. O. Koblinger, U. Heim, M. Welte, and W. Eisenmenger, Phys. Rev. Lett. 51, 284 (1983)
18. J. N. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1992).
19. W. A. Little, Phys. Rev. 123, 435 (1961).
20. R. E. Peterson and A. C. Anderson, Solid State Commun. 10, 891 (1972).
21. N. S. Shiren, Phys. Rev. Lett. 47, 1466 (1981).
22. M. Vourio, J. Phys. C 5, 1216 (1972).
23. E. T. Swartz and R. O. Pohl, Rev. Moder. Phys 61, 605 (1989).
24. P. K. Schelling, S. R. Phillpot, and P. Keblinski, J. Appl. Phys. 95, 6082 (2004).
25. R. J. Stoner, H. J. Maris, T. R. Anthony, and W. F. Banholzer, Phys. Rev. B 68, 1563 (1992).
26. C. Rossignol, B. Perrin, S. Laborde, L. Vandenbulcke, M. I. De Barros, and P. Djemia, J. Appl. Phys. 95, 4157 (2004).
27. C. J. K. Richardson, M. J. Ehrlich, and J. W. Wagner, J. Appl. Phys. 85, 861 (1999).
28. T. Klitsner and R. O. Pohl, Phys. Rev. B 36, 6551 (1987).
29. R. J. von Gutfeld and A. H. Nethercot, Phys. Rev. Lett. 12, 641 (1964).
30. J. P. Wolfe, Imaging Phonons. Acoustic Wave Propagation in Solids (Cambridge University Press, 2nd edition, 2005)
31. W. Grill and O. Weis, Phys. Rev. Lett. 35, 588 (1975).
32. W. E. Bron, M. Rossinelli, Y. H. Bai, and F. Keilmann, Phys. Rev. B. 27, 1370 (1983).
33. P. Hu, Phys. Rev. Lett. 44, 417 (1980).
34. P. A. Fokker, J. I. Dijkhuis, and H. W. de Wijn, Phys. Rev. B 55, 2925 (1997).
35. L. G. Tilstra, A. F. M. Arts, and H. W. de Wijn, Phys. Rev. B 68, 144302 (2003).
36. L. G. Tilstra, A. F. M. Arts, and H. W. de Wijn, J. Phys.: Conf. Ser. 92, 012011 (2007).
37. E. P. N. Damen, D. J. Dieleman, A. F. M. Arts, and H. W. de Wijn, Phys. Rev. B 64, 4303 (2001).
38. C.-K. Sun, Y.-K. Huang, J.-C. Liang, A. bare, S. P. DenBaars, Appl. Phys. Lett. 78, 1201 (2001).
39. A. Bartels, T. Dekorsy, H. Kurz, and K. Kohler, Phys. Rev. Lett. 82, 1044 (1999).
40. K. Mizoguchi, M. Hase, S. Nakashima, and M. Nakayama, Phys. Rev. B 60, 8262 (1999).
41. N. M. Stanton, R. N. Kini, A. J. Kent, M. Henini, and D. Lehmann, Phys. Rev. B 68, 113302 (2003).
42. A. J. Kent, R. N. Kini, N. M. Stanton, M. Henini, B. A. Glavin, V. A. Kochelap, and T. L. Linnik, Phys. Rev. Lett. 96, 215504 (2006).
43. C.-K. Sun, J.-C. Liang, and X.-Y. Yu, Phys. Rev. Lett. 84, 179 (2000).
44. H.-N. Lin, R. J. Stoner, H. J. Maris, and J. Tauc, J. Appl. Phys. 69, 3816 (1991).
45. O. B. Wright, J. Appl. Phys. 71, 1617 (1992).
46. C.-Y. Chen, Y.-C. Wen, H.-P. Chen, T.-M. Liu, C.-C. Pan, J.-I. Chyi, and C.-K. Sun, Appl. Phys. Lett. 91, 133101 (2007).
47. K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, Nat. Nanotechnol. 2, 704 (2007).
48. O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, Phys. Rev. B 71, 115330 (2005).
49. J. E. Rothenberg, Opt. Lett. 13, 713 (1988).
50. S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. C. Swan, R. S. Hegde, M. Reason, R. S. Goldman, and D. A. Reis, Phys. Rev. Lett. 95, 246104 (2005).
51. D. Mounier, E. Morozov, P. Ruello, J.-M. Breteau, P. Picart, and V. Gusev, Eur. Phys. J. Special Topics 153, 243 (2008).
52. P. J. S. van Capel and J. I. Dijkhuis, Appl. Phys. Lett. 88, 151910 (2006).
53. H.-Y. Hao and H. J. Maris, Phys. Rev. Lett. 84, 5556 (2000).
54. W. Singhsomroje and H. J. Maris, Phys. Rev. B 69, 174303 (2004).
55. P. Ruello, S. Zhang, P. Laffez, B. Perrin, and V. Gusev, Phys. Rev. B 76, 165107 (2007).
56. A. Devos, M. Foret, S. Ayrinhac, P. Emery, and B. Rufflé, Phys. Rev. B 77, 100201 (2008).
57. J. Wang, J. Wu, and C. Guo, Opt. Lett. 32, 719 (2007).
58. N. D. Lanzillotti-Kimura, B. Perrin, A. Fainstein, B. Jusserand, and A. Lemaître, Appl. Phys. Lett. 96, 053101 (2010).
Chapter 2
1. A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, Appl. Phys. Lett. 88, 041117 (2006).
2. A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
3. Y.-C. Wen, T.-S. Ko, T.-C. Lu, H.-C. Kuo, J.-I. Chyi, and C.-K. Sun, Phys. Rev. B 80, 195201 (2009).
4. Y.-C. Wen, L.-C. Chou, H.-H. Lin, V. Gusev, K.-H. Lin, and C.-K. Sun, Appl. Phys. Lett. 90, 172102 (2007).
5. C.-K. Sun, F. Vallee, S. Keller, J. E. Bowers, and S. P. DenBaars, Appl. Phys. Lett. 70, 2004 (1997); Y.-C. Wen, C.-Y. Chen, C.-H. Shen, S. Gwo, and C.-K. Sun, Appl. Phys. Lett. 89, 232114 (2006).
6. A. A. Karabutov and V. E. Gusev, Laser optoacoustic, (AIP Press, New York, 1993).
7. T. Saito, O. Matsuda, and O. B. Wright, Phys. Rev. B 67, 205421 (2003).
8. O. B. Wright, B. Perrin, O. Matsuda, and V. Gusev, Phys. Rev. B 64, 081202 (2001).
9. C.-K. Sun, J.-C. Liang, and X.-Y. Yu, Phys. Rev. Lett. 84, 179 (2000).
10. G.-W. Chern, K.-H. Lin, and C.-K. Sun, J. Appl. Phys. 95, 1114 (2004).
11. G. D. Sanders, C. J. Stanton, and C. S. Kim, Phys. Rev. B 64, 235316 (2001).
12. K.-H. Lin, C.-T. Yu, Y.-C. Wen, and C.-K. Sun, Appl. Phys. Lett. 86, 093110 (2005).
13. O. B. Wright, B. Perrin, O. Matsuda, and V. E. Gusev, Phys. Rev. B 64, 081202 (2001).
14. Y.-C. Wen, G.-W. Chern, K.-H. Lin, and C.-K. Sun, private communications.
15. K.-H. Lin, G.-W. Chern, C.-T. Yu, T.-M. Liu, C.-C. Pan, G.-T. Chen, J.-I. Chyi, S.-W. Huang, P.-C. Li, C.-K. Sun, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 52, 1404 (2005).
16. T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, Phys. Rev. B 75, 174307 (2007).
17. O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, Phys. Rev. B 77, 224110 (2008).
18. C.-Y. Chen, Y.-C. Wen, H.-P. Chen, T.-M. Liu, C.-C. Pan, J.-I. Chyi, and C.-K. Sun, Appl. Phys. Lett. 91, 133101 (2007).
19. G.-W. Chern, K.-H. Lin, Y.-K. Huang, C.-K. Sun, Phys. Rev. B 67, 121303 (2003).
20. J. P. Wolfe, Imaging Phonons, (Cambridge University Press, Cambridge, 1998).
21. T.-M. Liu, S.-Z. Sun, C.-F. Chang, C.-C. Pan, G.-T. Chen, J.-I. Chyi, V. Gusev, and C.-K. Sun, Appl. Phys. Lett. 90, 041902 (2007).
Chapter 3
1. E. T. Swartz and R. O. Pohl, Rev. Moder. Phys 61, 605 (1989).
2. G. A. Northrop and J. P. Wolfe, Phys. Rev. Lett. 52, 2156 (1984).
3. J. Weber, W. Sandmann, W. Dietsche, and H. Kinder, Phys. Rev. Lett. 40, 1469 (1978).
4. H. Kinder and W. Dietsche, Phys. Rev. Lett. 33, 578 (1974).
5. J. R. Olson and R. O. Pohl, J. Low Temp. Phys. 94, 539 (1994).
6. At thermal equilibrium, the number of phonons at a phonon state leaving one side is the same as the number of phonons returning from the other side into that state.
7. L. J. Challis, K. Dransfeld, J. Wilks, Proc. R. Soc. London Ser. A 260, 31 (1961).
8. P. Taborek and D. L. Goodstein, Phys. Rev. B 22, 1550 (1980).
9. R. E. Peterson and A. C. Anderson, Solid State Commun. 10, 891 (1972).
10. W. A. Little, IBM J. 6, 31 (1962).
11. H. Kinder and K. Weiss, J. Phys.: Condens. Matter 5, 2063 (1993).
12. N. S. Shiren, Phys. Rev. Lett. 47, 1466 (1981).
13. L.-W. Tu, C.-L. Hsiao, T.-W. Chi, I. Lo, and K.-Y. Hsieh, Appl. Phys. Lett. 82, 1601 (2003).
14. K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, Nat. Nanotechnol. 2, 704 (2007).
15. S. L. Broschat and E. I. Thorsos, J. Acoust. Soc. Amer. 101, 2615 (1997).
16. S. L. Broschat, IEEE Trans. Geosci. Remote Sensing 37, 632 (1999).
17. G. Chen, Nanoscale Energy Transport and Conversion (Oxford University Press, Oxford, 2005)
18. R. R. Reeber and K. Wang, MRS Internet J. Nitride Semicond. Res. 6, 3 (2001).
19. This statement could fail under extremely high populations due to the screening effect and nonlinear saturation of scattering process; whereas the experiments presented in this thesis were in the linear regime.
20. The result taken from the GaN p-n junction [Fig. 3.3(a)] shows that the amplitude of coherent phonons remained constant after acoustic waves reflected from the sample surface (The amplitude reduction is less than 1 %). This measurement was executed at room temperature, and there were abundant photoexcited carriers as well as ionized doped carriers inside this adopted sample (> 8 × 1018 cm-3). Even with such high populations of thermal phonons and charges, the consequent diffuse scattering is still too low to be detected. This observation thus indicates that the populations of thermal phonons (surface modes) and ionized charges play a minor role in the interface phonon scatterings. Even with these negligible effects on interface scattering, it is necessary to estimate the influences of the bulk thermal phonons on phonon propagation by performing temperature-dependent experiments. This investigation facilitates us to determine phonon dephasing time duet to lattice anharmonicity, which was used to calibrate the propagation loss in the MQW experiments [Fig. 3.3(c) and (d)]. This work has been discussed in Sec. 2.4 and was previously performed and published [T.-M. Liu et al., Appl. Phys. Lett. 90, 041902 (2007)].
21. O. Matsuda, O. B. Wright, D. H. Hurley, V. Gusev, and K. Shimizu, Phys. Rev. B 77, 224110 (2008).
22. Heat conduction measurement reveals the scattering of heat carriers which are acoustic phonons with a Plank distribution. Temperature-dependent heat conduction measurement thus indicates the effect of phonon frequency on the heat transport. The frequency-dependent phonon scattering measurements using superconducting tunneling junctions and our nanoultrasonics provides alternative examinations on the frequency effect, and can thus be used to interpret the experiments on heat conduction.
Chapter 4
1. J. N. Israelachvili, Intermolecular and Surface Forces. (Academic, London, 1992).
2. Q. Du, E. Freysz, and Y. R. Shen, Science 264, 826 (1994).
3. D. Chandler, Nature 437, 640 (2005).
4. M. R. Hoffmann et al., Chem. Rev. 95, 69 (1995).
5. J. Israelachvili and H. Wennerström, Nature 379, 219 (1996).
6. J. W. M. Frenken and T. H. Oosterkamp, Nature 464, 38 (2010), and references therein.
7. T. R. Jensen, M. O. Jensen, N. Reitzel, K. Balashev, G. H. Peters, K. Kjaer, and T. Bjornholm, Phys. Rev. Lett. 90, 086101 (2003).
8. A. Centrone, et al., Proc. Natl. Acad. Sci. USA 105, 9886 (2008).
9. T. Fukuma, Y. Ueda, S. Yoshioka, and H. Asakawa, Phys. Rev. Lett. 104, 016101 (2010).
10. U. Raviv and J. Klein, Science 297, 1540 (2002).
11. P. B. Miranda and Y. R. Shen, J. Phys. Chem. B 103, 3292 (1999).
12. M. F. Toney, J. N. Howard, J. Richer, G. L. Borges, J. G. Gordon, O. R. Melroy, D. G. Wiesler, D. Yee, and L. B. Sorensen, Nature 368, 444 (1994).
13. L. Cheng, P. Fenter, K. L. Nagy, M. L. Schlegel, and N. C. Sturchio, Phys. Rev. Lett. 87, 156103 (2001).
14. C.-Y. Ruan, V. A. Lobastov, F. Vigliotti, S. Chen, and A. H. Zewail, Science 304, 80 (2004).
15. G. Held and D. Menzel, Phys. Rev. Lett. 74, 4221 (1995).
16. J. Cerda, A. Michaelides, M.-L. Bocquet, P. J. Feibelman, T. Mitsui, M. Rose, E. Fomin, and M. Salmeron, Phys. Rev. Lett. 93, 116101 (2005).
17. T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree, and M. Salmeron, Science 297, 1850 (2002).
18. J. C. Dore, M. Funn, T. Hasebe, J. H. Stange, Colloids Surf. 36, 199 (1989).
19. J. E. Boyd, A. Briskman, V. K. Colvin, and D. M. Mittleman, Phys. Rev. Lett. 87, 147401 (2001).
20. See, e.g., Z. Ge, D. G. Cahill, and P. V. Braun, Phys. Rev. Lett. 96, 186101 (2006).
21. N. J. Watkins, G. W. Wicks, and Y. Gao, Appl. Phys. Lett. 75, 2602 (1999).
22. J. Braun, A. Glebov, A. P. Graham, A. Menzel, and J. P. Toennies, Phys. Rev. Lett. 80, 2638 (1998).
23. C. Masciovecchio, S. C. Santicci, A. Gessini, S. Di Fonzo, G. Ruocco, and F. Sette, Phys. Rev. Lett. 92, 255507 (2004).
24. A. I. Erokhin, J. Russ. Las. Res. 23, 369 (2002).
25. pH value is an important factor influencing the structure of interfacial water. The effect of pH value on the coherent phonon reflection is under investigation.
26. G.-W. Chern, et al., Phys. Rev. B 67, 121303(R) (2003).
27. E. T. Swartz and R. O. Pohl, Rev. Moder. Phys. 61, 605 (1989).
28. H. C. Basso, W. Dietsche, and H. Kinder, J. Low Temp. Phys. 65, 247 (1994).
29. The material properties used are Lo = 6095 kg/m3, V = 7950 m/s for GaN [O. Ambacher et al., J. Appl. Phys. 85, 3222 (1999)]; Lo = 1000 kg/m3 for liquid water. Phonon dispersion of the longitudinal mode in water is considered [F. Sette et al., Phys. Rev. Lett. 77, 83 (1996)]. The frequency-dependent acoustic attenuation in GaN and liquid water are taken from the literatures [T.-M. Liu et al., Appl. Phys. Lett. 90, 041902 (2007); Ref. 24]. Here, Lo is the mass density, and V is the sound velocity.
30. B. M. Borkent, S. M. Dammer, H. Schonherr, G. J. Vancso, and D. Lohse, Phys. Rev. Lett. 98, 204502 (2007).
31. P. A. Hwang and W. J. Teague, J. Atmos. Ocean. Tech. 17, 847, (2000).
32. H. Wang, Y. He, W. Chen, Y. W. Zeng, K. Stahl, T. Kikegawa, and J. Z. Jiang, J. Appl. Phys. 107, 033520 (2010).
33. S.-C. Chin, Y.-C. Chang, C.-C. Hsu, W.-H. Lin, C.-I. Wu, C.-S. Chang, T.-T. Tsong, W.-Y. Woon, L.-T. Lin, and H.-J. Tao, Nanotechnology 19, 325703 (2008).
34. J. P. Boon and S. Yip, Molecular Hydrodynamics. (McGraw-Hill, New York, 1980).
35. Y. Xie, K. F. Ludwig, Jr., G. Morales, D. E. Hare, and C. M. Sorensen, Phys. Rev. Lett. 71, 2050 (1993).
36. T. Klitsner and R. O. Pohl, Phys. Rev. B 36, 6551 (1987).
37. Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, Science 289, 1734 (2000).
38. F. Hofmann and J. P. Toennies, Chem. Rev. 96, 1307 (1996).
39. B. H. Tongue, Principles of Vibration, 2nd ed. (Oxford University Press, Oxford, 2002), p. 27.
40. S. Kashiwada, O. Matsuda, J. J. Baumberg, R. L. Voti, O. B. Wright, J. App. Phys. 100, 073506 (2006).
41. D. Xu, Y. Leng, Y. Chen, and D. Li, Appl. Phys. Lett. 94, 201901 (2009).
42. K. Raghavan, K. Foster, K. Motakabbir, and M. Berkowitz, J. Chem. Phys. 94, 2110 (1991).
43. Range of the interlayer spacing was taken from the x-ray study on interfacial water on mica surfaces (Ref. 13) and the monolayer thickness of Ih ice. AFM studies have indicated a shorter intermolecular distance (< 3 &Aring;), while detailed investigation of the effect of interlayer spacing on the fitting results has not be performed due to its minor role compared to the uncertainty in the layer number.
Chapter 5
None
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48728-
dc.description.abstract由於兆赫頻段的同調聲學聲子兼具奈米尺度波長與高穿透深度之特性,故其可和次表面奈米結構與相似能量之粒子相互作用。兆赫聲學的發展因此可促進物理學的進步,並引發新應用的可能。作者以超快光譜技術進行一系列的兆赫聲學實驗,藉以探討同調聲學聲子與晶體表面的交互作用,此研究的目的在於釐清振動能量如何傳遞並穿越界面。
本論文分三組探討界面,分別為固態/空氣、固態/固態,與固態/液態水界面。作者微觀地評估界面反射對聲子同調性所造成的破壞,藉以瞭解造成聲子散射的主要機制,俾解決長期在Kapitza anomaly議題上的爭論。首先,本文檢視在晶體表面所發生的聲子散射,得出在原子等級平坦的表面,聲子散射的主要型態為鏡向散射。然而隨著表面變粗糙或聲子頻率增高,鏡向散射機率會逐漸下降。本研究發現聲子與界面之交互作用,符合描述波在粗糙界面散射的巨觀理論。此結論定量地證明原子等級表面不平整對於次兆赫聲子散射的重要影響。
次於固態/固態界面所進行的延伸性研究,確認了界面不平整對聲子散射的支配地位。基於此發現,作者對一般固態表面,進行正常-異常邊界熱阻變遷的臨界頻率/溫度估算,其符合過去在低溫熱傳導實驗的觀測結果。在應用的層面上,此研究展示了一個具有原子解析度與非破壞優點的界面粗糙度評估方法,而該方法有助於奈米量測技術突破現今受表面量測與樣品破壞的限制。
由於兆赫音波得在室溫下評估埋藏之界面,因此可以進一步應用在固態/液態水界面的聲子散射行為研究。本文指出,在此界面所量得的聲學頻譜顯現出數個反射低點,與由鏡向散射變遷至漫射的過渡變化。因為連續體彈性理論無法解釋實驗結果,因此可知離散的水分子與其群聚結構對於實驗觀察有關鍵性的影響。鏡向散射變成漫射的過渡變化,揭露了界面鄰近水分子的區域結構規則性。從能量傳遞的觀點而言,散射型態的轉變指出在兆赫頻段,聲子穿透係數由0.1大幅增加為0.88,此特徵暗示了區域氫鍵網路結構與固態/水界面熱傳導的關連性。此外,實驗發現,界面分子膜受激振動能引起聲子共振穿透,此透露出奈米超音波技術具有評估界面水中跨分子作用力的潛力。本研究指出,音波在介面水中的衰減速度小於其在液態水與多晶相冰中的衰減。此外,介面水是由四到五層水分子膜所組成。
zh_TW
dc.description.abstractTHz coherent acoustic phonons have capability to interact with sub-surface nanostructures and quanta with comparable energies due to their nanoscaled wavelengths and high penetration depths. The development of THz acoustics thus stimulates the advances of condense-matter physics and leads to new applications. Based on ultrafast optical spectroscopies, this thesis describes a series of THz acoustic experiments which investigate interactions between coherent acoustic phonons and crystal boundaries. The goal is to facilitate our understanding of a fundamental issue: how does vibration energy transmit through an interface?
The thesis is composed of three parts: solid/air, solid/solid, and solid/liquid-water interfaces. Microscopic investigations on the destruction of phonon coherence during interface reflections clarify the origins of phonon scatterings at different interfaces, which are critical for unraveling the long-standing debate on Kapitza anomaly. Phonon scatterings at epitaxial-quality free surface are first examined. We show that specular phonon scatterings are the predominant scattering type for atomically flat surfaces, while the specular scattering probability decreases as the surface (frequency) becomes irregular (higher). The phonon-interface interaction is found to agree well with the macroscopic theory on wave scattering from rough surfaces. Our study thus quantitatively verifies the responsibility of corrugations in diffuse scatterings of the sub-THz phonons.
An extended study on a solid/solid interface confirms the dominant role of interface irregularity in the phonon scatterings. Based on these finding, we estimate the threshold frequency (and threshold temperature) for the transition of normal-to-anomalous Kapitza resistance, satisfactorily agreeing with previous cryogenic observations. From an application viewpoint, this study opens a way to nondestructively probe interface roughness at an atomic level; however, nowadays nanometrologies are either restricted to surface measurement or highly destructive.
The ability of THz acoustic waves to explore buried interfaces at room temperature enables us to investigate phonon scatterings at a solid/liquid-water interface. The measured acoustic reflectivity spectrum shows several remarkable minima in the sub-THz range and a frequency threshold, above that interface phonon scattering transits from specular to diffuse type. All possible mechanisms are examined in details. Violation of the continuum elastic theory indicates the influence of discrete water molecules and their assemblies on our experiments, revealing molecular-level resolutions of the adopted nanoultrasonic technique.
The observed scattering transition discloses local structural order of interfacial water and indicates a substantial increase of phonon transmission coefficient from 0.1 to 0.88 in the sub-THz range. This feature implies a close relation of the local hydrogen-bond network to the heat conduction at wetting interfaces. Moreover, the observed resonant transmission, resulting from stimulated vibrations of interfacial molecular layers, implicates the potential of the nanoultrasonics in determination of intermolecular force interactions within interfacial water. Our dynamic study indicates that the acoustic attenuation in the highly crystalline interfacial water is less than the liquid and polycrystalline iced water, and the interfacial water is composed of 4~5 monolayers.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T07:10:42Z (GMT). No. of bitstreams: 1
ntu-99-F93941028-1.pdf: 1784503 bytes, checksum: 931bf87b2b6a6b02d3b97f2afe7417a7 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 I
Abstract III
摘要 V
Table of Contents VII
List of Abbreviations IX
List of Symbols X

Chapter 1 Introduction 1
1.1 Interface phonon scatterings: Historical review 1
1.2 Overview of femtosecond acoustics 5
1.3 Motivation and thesis organization 10
Reference 12

Chapter 2 Generation, Detection, and Propagation of THz Acoustic Waves 15
2.1 Principle of optical pump-probe technique 15
2.2 Photogeneration of coherent acoustic phonons 18
2.2.1 Loaded-spring model 19
2.2.2 Numerical investigation on the photoacoustic generation 21
2.3 Detection of coherent acoustic phonons 26
2.3.1 Mechanisms of different detection processes 26
2.3.2 Demonstrations of photoacoustic detection by nanoscaled multi-layers 30
2.4 Propagation of coherent acoustic phonons 32
Reference 35

Chapter 3 Acoustic Phonon Scattering at Solid/Air and Solid/Solid Interfaces 37
3.1 Descriptions and mechanisms of interface phonon scatterings 37
3.1.1 Acoustic/Diffuse mismatch model 37
3.1.2 Overview of scattering mechanisms 40
3.2 Determination of specular scattering probability using THz acoustic waves 42


3.2.1 Measurement of specular scattering probability 42
3.2.2 Sample structure and experimental setup 44
3.3 Phonon scattering at solid/air interface 47
3.3.1 Low sub-terahertz regime 47
3.3.2 High sub-terahertz regime 49
3.4 Discussions 50
3.4.1 Roughness-based scattering theory (Small-slope approximation) 50
3.4.2 Discussion 52
3.5 Phonon scattering at solid/solid interface 54
3.5 Conclusions 56
Reference 57

Chapter 4 Acoustic Phonon Scattering at Solid/Liquid-Water Interface 59
4.1 Interfacial water and overview of experimental techniques 59
4.2 Experimental setup and sample preparation 64
4.3 Nanoultrasonic investigations 66
4.3.1 Time-domain observations 66
4.3.2 Spectral analysis and normalized reflectivity 68
4.4 Discussions 71
4.4.1 Macroscopic (continuum) scatters 73
4.4.2 Local water structure 76
4.4.3 Collective resonant motions of water molecules 77
4.5 Discrete-layering model 79
4.6 Conclusions 85
Reference 87

Chapter 5 Summary and Outlook 91

Appendix I – Publication List 94
dc.language.isoen
dc.subject介面水zh_TW
dc.subject超快雷射zh_TW
dc.subject聲子zh_TW
dc.subject卡披薩zh_TW
dc.subject邊界熱阻zh_TW
dc.subjectinterfacial wateren
dc.subjectKapitzaen
dc.subjectultrafast laseren
dc.subjectphononen
dc.subjectthermal boundary resistanceen
dc.title同調兆赫聲學聲子之介面散射zh_TW
dc.titleInterface Scattering of THz Coherent Acoustic Phononsen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee張嘉升(Chia-Seng Chang),黃英碩(Ing-Shouh Hwang),郭哲來(Jer-Lai Kuo),張玉明(Yu-Ming Chang),吳政忠(Tsung-Tsong Wu)
dc.subject.keyword聲子,超快雷射,卡披薩,邊界熱阻,介面水,zh_TW
dc.subject.keywordphonon,ultrafast laser,Kapitza,thermal boundary resistance,interfacial water,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2010-10-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved