請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48692
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳敏慧(Min-Huey Cehn) | |
dc.contributor.author | Chia-Yung Lin | en |
dc.contributor.author | 林佳詠 | zh_TW |
dc.date.accessioned | 2021-06-15T07:08:45Z | - |
dc.date.available | 2011-03-03 | |
dc.date.copyright | 2011-03-03 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-10-25 | |
dc.identifier.citation | Abok K, Brunk U, Jung B, Ericsson J (1984). Morphologic and histochemical studies on the differing radiosensitivity of ductular and acinar cells of the rat submandibular gland. Virchows Arch B Cell Pathol Incl Mol Pathol 45(4):443-60.
Alhadlaq A, Mao JJ (2004). Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev 13(4):436-48. Andriopoulos B, Jr., Corradini E, Xia Y, Faasse SA, Chen S, Grgurevic L, et al. (2009). BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet 41(4):482-7. Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, et al. (2004). Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104(4):1217-23. Arbab AS, Yocum GT, Rad AM, Khakoo AY, Fellowes V, Read EJ, et al. (2005). Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed 18(8):553-9. Atkinson JC, Fox PC (1992). Salivary gland dysfunction. Clin Geriatr Med 8(3):499-511. Atkinson JC, Grisius M, Massey W (2005). Salivary hypofunction and xerostomia: diagnosis and treatment. Dent Clin North Am 49(2):309-26. Aubin JE (1998). Bone stem cells. J Cell Biochem Suppl 30-31(73-82. Baldwin SP, Saltzman WM (2001). Aggregation enhances catecholamine secretion in cultured cells. Tissue Eng 7(2):179-90. Banerjee SD, Cohn RH, Bernfield MR (1977). Basal lamina of embryonic salivary epithelia. Production by the epithelium and role in maintaining lobular morphology. J Cell Biol 73(2):445-63. Barry FP, Murphy JM (2004). Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36(4):568-84. Baum BJ (1993). Principles of saliva secretion. Ann N Y Acad Sci 694(17-23. Bernd H, De Kerviler E, Gaillard S, Bonnemain B (2009). Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program. Invest Radiol 44(6):336-42. Bianco P, Riminucci M, Gronthos S, Robey PG (2001). Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180-92. Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000). From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290(5497):1775-9. Brown PO, Botstein D (1999). Exploring the new world of the genome with DNA microarrays. Nat Genet 21(1 Suppl):33-7. Bussolati B, Hauser PV, Carvalhosa R, Camussi G (2009). Contribution of stem cells to kidney repair. Curr Stem Cell Res Ther 4(1):2-8. Butte A (2002). The use and analysis of microarray data. Nat Rev Drug Discov 1(12):951-60. Chang YJ, Liu JW, Lin PC, Sun LY, Peng CW, Luo GH, et al. (2009). Mesenchymal stem cells facilitate recovery from chemically induced liver damage and decrease liver fibrosis. Life Sci 85(13-14):517-25. Chen MH, Lin S, Hsieh CH, Lee HS, Chiang H, Jiang CC (2004). Identification and initial characterization of small cells in adult cartilage and bone marrow. J Formos Med Assoc 103(4):264-73. Chen MH, Chen RS, Hsu YH, Chen YJ, Young TH (2005). Proliferation and phenotypic preservation of rat parotid acinar cells. Tissue Eng 11(3-4):526-34. Chen MH, Chen YJ, Liao CC, Chan YH, Lin CY, Chen RS, et al. (2009). Formation of salivary acinar cell spheroids in vitro above a polyvinyl alcohol-coated surface. J Biomed Mater Res A 90(4):1066-72. Chivu M, Dima SO, Stancu CI, Dobrea C, Uscatescu V, Necula LG, et al. (2009). In vitro hepatic differentiation of human bone marrow mesenchymal stem cells under differential exposure to liver-specific factors. Transl Res 154(3):122-32. Chung CH, Bernard PS, Perou CM (2002). Molecular portraits and the family tree of cancer. Nat Genet 32 Suppl(533-40. Chung TH, Wu SH, Yao M, Lu CW, Lin YS, Hung Y, et al. (2007). The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 28(19):2959-66. Colter DC, Class R, DiGirolamo CM, Prockop DJ (2000). Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A 97(7):3213-8. Coppes RP, Vissink A, Konings AW (2002). Comparison of radiosensitivity of rat parotid and submandibular glands after different radiation schedules. Radiother Oncol 63(3):321-8. Couzin J (2006). Clinical trials. A shot of bone marrow can help the heart. Science 313(5794):1715-6. Cutler LS, Chaudhry AP (1973). Intercellular contacts at the epithelial-mesenchymal interface during the prenatal development of the rat submandibular gland. Dev Biol 33(2):229-40. Dimitriou ID, Kapsogeorgou EK, Abu-Helu RF, Moutsopoulos HM, Manoussakis MN (2002). Establishment of a convenient system for the long-term culture and study of non-neoplastic human salivary gland epithelial cells. Eur J Oral Sci 110(1):21-30. Dolgachev V, Thomas M, Berlin A, Lukacs NW (2007). Stem cell factor-mediated activation pathways promote murine eosinophil CCL6 production and survival. J Leukoc Biol 81(4):1111-9. Epstein JB, Emerton S, Le ND, Stevenson-Moore P (1999). A double-blind crossover trial of Oral Balance gel and Biotene toothpaste versus placebo in patients with xerostomia following radiation therapy. Oral Oncol 35(2):132-7. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al. (1987). Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84(21):7413-7. Ferraccioli GF, Salaffi F, De Vita S, Casatta L, Avellini C, Carotti M, et al. (1996). Interferon alpha-2 (IFN alpha 2) increases lacrimal and salivary function in Sjogren's syndrome patients. Preliminary results of an open pilot trial versus OH-chloroquine. Clin Exp Rheumatol 14(4):367-71. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, et al. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279(5356):1528-30. Figliuzzi M, Cornolti R, Perico N, Rota C, Morigi M, Remuzzi G, et al. (2009). Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats. Transplant Proc 41(5):1797-800. Fox PC (1998). Acquired salivary dysfunction. Drugs and radiation. Ann N Y Acad Sci 842(132-7. Franzen L, Funegard U, Ericson T, Henriksson R (1992). Parotid gland function during and following radiotherapy of malignancies in the head and neck. A consecutive study of salivary flow and patient discomfort. Eur J Cancer 28(2-3):457-62. Friedenstein AJ, Piatetzky S, II, Petrakova KV (1966). Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381-90. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393-403. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4(5):267-74. George Morstyn WS (1996). Cell Therapy: stm cell transplantation, gene therapy and cellular immunotherapy Cambridge, United Kingdom: The Press Syndicate of the University of Cambrideg. Gerhold DL, Jensen RV, Gullans SR (2002). Better therapeutics through microarrays. Nat Genet 32 Suppl(547-51. Giri S, Trewyn BG, Stellmaker MP, Lin VS (2005). Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem Int Ed Engl 44(32):5038-44. Gregory CA, Prockop DJ, Spees JL (2005). Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation. Exp Cell Res 306(2):330-5. Horwitz EM (2003). Stem cell plasticity: the growing potential of cellular therapy. Arch Med Res 34(6):600-6. Huang DM, Hung Y, Ko BS, Hsu SC, Chen WH, Chien CL, et al. (2005). Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. Faseb J 19(14):2014-6. Huang DM, Chung TH, Hung Y, Lu F, Wu SH, Mou CY, et al. (2008). Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells. Toxicol Appl Pharmacol 231(2):208-15. Huang HC, Chang PY, Chang K, Chen CY, Lin CW, Chen JH, et al. (2009). Formulation of novel lipid-coated magnetic nanoparticles as the probe for in vivo imaging. J Biomed Sci 16(86):86. Jensen JL, Langberg CW (1997). [Temporary radiation-induced hypo-salivation in a child]. Tidsskr Nor Laegeforen 117(21):3077-9. Johnson DA, Lopez H, Navia JM (1995). Effects of protein deficiency and diet consistency on the parotid gland and parotid saliva of rats. J Dent Res 74(8):1444-52. Koide N, Shinji T, Tanabe T, Asano K, Kawaguchi M, Sakaguchi K, et al. (1989). Continued high albumin production by multicellular spheroids of adult rat hepatocytes formed in the presence of liver-derived proteoglycans. Biochem Biophys Res Commun 161(1):385-91. Kotarsky K, Sitnik KM, Stenstad H, Kotarsky H, Schmidtchen A, Koslowski M, et al. (2009). A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa. Mucosal Immunol 3(1):40-8. Krebsbach PH, Kuznetsov SA, Bianco P, Robey PG (1999). Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med 10(2):165-81. Kuo CK, Tuan RS (2003). Tissue engineering with mesenchymal stem cells. IEEE Eng Med Biol Mag 22(5):51-6. Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, et al. (2003). A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125(15):4451-9. Langer R, Vacanti JP (1993). Tissue engineering. Science 260(5110):920-6. Larkin JE, Frank BC, Gavras H, Sultana R, Quackenbush J (2005). Independence and reproducibility across microarray platforms. Nat Methods 2(5):337-44. Lin AL, Johnson DA, Wu Y, Wong G, Ebersole JL, Yeh CK (2001). Measuring short-term gamma-irradiation effects on mouse salivary gland function using a new saliva collection device. Arch Oral Biol 46(11):1085-9. Lo W, Chang YL, Liu JS, Hseuh CM, Hovhannisyan V, Chen SJ, et al. (2009). Multimodal, multiphoton microscopy and image correlation analysis for characterizing corneal thermal damage. J Biomed Opt 14(5):054003. Lombaert IM, Wierenga PK, Kok T, Kampinga HH, deHaan G, Coppes RP (2006). Mobilization of bone marrow stem cells by granulocyte colony-stimulating factor ameliorates radiation-induced damage to salivary glands. Clin Cancer Res 12(6):1804-12. Lombaert IM, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, et al. (2008). Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One 3(4):e2063. Lough J, Barron M, Brogley M, Sugi Y, Bolender DL, Zhu X (1996). Combined BMP-2 and FGF-4, but neither factor alone, induces cardiogenesis in non-precardiac embryonic mesoderm. Dev Biol 178(1):198-202. MacDonald IC, Groom AC, Chambers AF (2002). Cancer spread and micrometastasis development: quantitative approaches for in vivo models. Bioessays 24(10):885-93. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, et al. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103(5):697-705. Mandel ID (1989). The role of saliva in maintaining oral homeostasis. J Am Dent Assoc 119(2):298-304. Mao JJ, Giannobile WV, Helms JA, Hollister SJ, Krebsbach PH, Longaker MT, et al. (2006). Craniofacial tissue engineering by stem cells. J Dent Res 85(11):966-79. Matsumoto S, Okumura K, Ogata A, Hisatomi Y, Sato A, Hattori K, et al. (2007). Isolation of tissue progenitor cells from duct-ligated salivary glands of swine. Cloning Stem Cells 9(2):176-90. Matthews VB, Yeoh GC (2005). Liver stem cells. IUBMB Life 57(8):549-53. Methods in Enzymology, Volume 420: Stem Cell Tools and Other Experimental Protocols (2006). Elsvier Academic Press. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000). Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290(5497):1779-82. Molitoris BA, Sandoval RM (2005). Intravital multiphoton microscopy of dynamic renal processes. Am J Physiol Renal Physiol 288(6):F1084-9. Nagler RM (1998). Short- and long-term functional vs morphometrical salivary effects of irradiation in a rodent model. Anticancer Res 18(1A):315-20. Nagler RM (2002). The enigmatic mechanism of irradiation-induced damage to the major salivary glands. Oral Dis 8(3):141-6. Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I (2004). Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 77(2):192-204. O'Connell AC (2000). Natural history and prevention of radiation injury. Adv Dent Res 14(57-61. Okumura K, Nakamura K, Hisatomi Y, Nagano K, Tanaka Y, Terada K, et al. (2003). Salivary gland progenitor cells induced by duct ligation differentiate into hepatic and pancreatic lineages. Hepatology 38(1):104-13. Orkin SH (2000). Stem cell alchemy. Nat Med 6(11):1212-3. Otonkoski T, Gao R, Lundin K (2005). Stem cells in the treatment of diabetes. Ann Med 37(7):513-20. Owen M (1988). Marrow stromal stem cells. J Cell Sci Suppl 10(63-76. Pispa J, Thesleff I (2003). Mechanisms of ectodermal organogenesis. Dev Biol 262(2):195-205. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143-7. Rajaraman P, Brenner AV, Neta G, Pfeiffer R, Wang SS, Yeager M, et al. (2010). Risk of meningioma and common variation in genes related to innate immunity. Cancer Epidemiol Biomarkers Prev 19(5):1356-61. Roco MC (2003). Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14(3):337-46. Rotter N, Oder J, Schlenke P, Lindner U, Bohrnsen F, Kramer J, et al. (2008). Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev 17(3):509-18. Schafer R (2010). Labeling and Imaging of Stem Cells - Promises and Concerns. Transfus Med Hemother 37(2):85-89. Schilling T, Noth U, Klein-Hitpass L, Jakob F, Schutze N (2007). Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells. Mol Cell Endocrinol 271(1-2):1-17. Services DoHaH (2001a). Stem Cells: Scientific Progress and Future Research Directions. Ch1. Services DoHaH (2001b). Stem Cells: Scientific Progress and Future Research Directions. Ch.4. Shi J, Votruba AR, Farokhzad OC, Langer R Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Lett 2010(20. Shiozawa K, Shiozawa S (2006). [Interferon alpha (IFNalpha) treatment for Sjogren's syndrome]. Nippon Rinsho 64(7):1345-53. Slowing I, Trewyn BG, Lin VS (2006). Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128(46):14792-3. Soria B, Bedoya FJ, Martin F (2005). Gastrointestinal stem cells. I. Pancreatic stem cells. Am J Physiol Gastrointest Liver Physiol 289(2):G177-80. Sun S, Zeng H (2002). Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204-5. Teng SW, Tan HY, Peng JL, Lin HH, Kim KH, Lo W, et al. (2006). Multiphoton autofluorescence and second-harmonic generation imaging of the ex vivo porcine eye. Invest Ophthalmol Vis Sci 47(3):1216-24. Tosh D, Slack JM (2002). How cells change their phenotype. Nat Rev Mol Cell Biol 3(3):187-94. Urek MM, Bralic M, Tomac J, Borcic J, Uhac I, Glazar I, et al. (2005). Early and late effects of X-irradiation on submandibular gland: a morphological study in mice. Arch Med Res 36(4):339-43. Valdez IH, Atkinson JC, Ship JA, Fox PC (1993). Major salivary gland function in patients with radiation-induced xerostomia: flow rates and sialochemistry. Int J Radiat Oncol Biol Phys 25(1):41-7. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002). Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297(5590):2256-9. Wang JS, Shum-Tim D, Galipeau J, Chedrawy E, Eliopoulos N, Chiu RC (2000). Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 120(5):999-1005. Wang Y, Yan T, Shen J, Guo H, Xiang X (2007). Preventive effect of Ophiopogon japonicus polysaccharides on an autoallergic mouse model for Sjogren's syndrome by regulating the Th1/Th2 cytokine imbalance. J Ethnopharmacol 114(2):246-53. Watt FM, Hogan BL (2000). Out of Eden: stem cells and their niches. Science 287(5457):1427-30. Weissleder R, Elizondo G, Josephson L, Compton CC, Fretz CJ, Stark DD, et al. (1989). Experimental lymph node metastases: enhanced detection with MR lymphography. Radiology 171(3):835-9. Xie QP, Huang H, Xu B, Dong X, Gao SL, Zhang B, et al. (2009). Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differentiation 77(5):483-91. Yoo HJ, Lee JM, Lee MW, Kim SJ, Lee JY, Han JK, et al. (2008). Hepatocellular carcinoma in cirrhotic liver: double-contrast-enhanced, high-resolution 3.0T-MR imaging with pathologic correlation. Invest Radiol 43(7):538-46. Yoon J, Choi SC, Park CY, Choi JH, Kim YI, Shim WJ, et al. (2008). Bone marrow-derived side population cells are capable of functional cardiomyogenic differentiation. Mol Cells 25(2):216-23. Zheng C, Cotrim AP, Sunshine AN, Sugito T, Liu L, Sowers A, et al. (2009). Prevention of radiation-induced oral mucositis after adenoviral vector-mediated transfer of the keratinocyte growth factor cDNA to mouse submandibular glands. Clin Cancer Res 15(14):4641-8. Zhu C, Huang H, Hua R, Li G, Yang D, Luo J, et al. (2009). Molecular and functional characterization of adipokinetic hormone receptor and its peptide ligands in Bombyx mori. FEBS Lett 583(9):1463-8. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48692 | - |
dc.description.abstract | 背景: 目前臨床上仍無法徹底解決因頭頸部癌症之放射治療或自體免疫疾病如Sjögren's syndrome等所導致的唾液腺功能低下問題,使唾液分泌減少而造成嚴重齲齒、牙周病、吞嚥消化困難將終身影響病人生活的舒適度。近年許多研究發現骨髓幹細胞有能力分化成不同胚層的許多細胞,因此本研究之假說乃骨髓幹細胞具潛力轉分化成類唾液腺細胞並提供一個細胞療法之大量細胞來源以幫助受損的唾液腺再生。
本研究目的在於 (1) 探討骨髓幹細胞轉分化為唾液腺細胞之能力 (2) 探討利用骨髓幹細胞達成唾液腺再生的效用 (3) 觀察植入小鼠唾液腺內之骨髓幹細胞長期分布之情形 (4) 探討骨髓幹細胞轉分化為唾液腺細胞之整體基因變化。 方法: 首先從體外細胞培養驗證骨髓幹細胞轉分化為唾液腺細胞之能力。從4周大的大鼠之大腿骨取其骨髓幹細胞並將之與頷下腺唾液腺細胞進行間接與直接共同培養。間接共同培養利用雙層培養皿以薄膜將兩種細胞區隔。骨髓幹細胞在底層培養皿而唾液腺細胞在上層培養皿。唾腺細胞所釋放的化學訊號可經由培養基透過薄膜上0.4μm孔洞傳遞。直接共同培養是利用傳統DiI螢光染劑及新型螢光結合之奈米粒子事先標定出骨髓幹細胞,再與唾液腺細胞進行共同培養。藉此可在其後實驗中直接觀察骨髓幹細胞並利用免疫螢光染色來檢驗其變化。結果顯示經由直接與間接共同培養都使骨髓幹細胞轉分化成類似唾液腺細胞一般具有特殊分泌澱粉酶蛋白的表現。這些轉分化後的骨髓幹細胞以下稱為類唾液腺細胞。其次,利用動物實驗在生物體內檢驗骨髓幹細胞與類唾液腺細胞的治療效果與達成唾液腺再生的效用。利用脂質包膜超小極性氧化鐵奈米粒子先標定骨髓幹細胞並經由直接共同培養以得到標定過的類唾液腺細胞。骨髓幹細胞與類唾腺細胞都利用動物實驗來檢視其治療效果。總共140隻免疫功能受限的小鼠分成四組: (1)正常唾液腺功能 (2) 利用放射線照射其頭頸部破壞唾腺功能 (3)將標定過的骨髓幹細胞植入放射線後功能被破壞後的唾腺 (4)將標定過的類唾腺細胞植入放射線後功能被破壞後的唾腺。在其後固定的時間再分別對四組小鼠做巨觀及微觀的唾液腺功能測量。此外,利用多光子顯微鏡合併特殊設計的活體觀測裝置,觀察取自螢光小鼠之骨髓幹細胞植入唾液內之分布情形,並輔佐驗證骨髓幹細胞在體內轉分化為類唾腺細胞之能力。最後,利用基因微陣列檢測經過間接共同培養後之骨髓幹細胞,確認其整體基因變化朝向唾液腺細胞分化之方向。 結果: 經由間接/直接共同培養所得骨髓幹細胞,利用免疫螢光染色及RT-PCR檢視,可發現其表現出唾液腺細胞特殊的澱粉酶蛋白質及基因。直接測試其澱粉酶功能,也的確具有將澱粉實際水解成單醣之功能。在動物實驗方面,結果顯示,植入骨髓幹細胞及類唾腺細胞都可使因放射線萎縮的唾腺重量回復、並且和整體健康相關的全身體重亦重新增加、使原本受損降低的唾液分泌量重新回升,而且發現類唾腺細胞在促進唾液分泌方面明顯骨髓幹細胞之效果好而且具有統計意義上之差別。此外,組織H&E染色亦證實骨髓幹細胞在唾液腺內可直接轉分化成類唾液腺細胞。另一方面,利用特殊裝置可以達成活體觀測小鼠之唾液腺內狀況,而且其後的唾液腺組織切片不需經過染色,即可見標定過的骨髓幹細胞細胞存活於組織中並結合到唾液腺泡中。更進一步,由基因微陣列晶片所分析之結果,經過間接共同培養後之骨髓幹細胞,原本應該往硬骨/軟骨/脂肪分化的基因表現都降低,而唾液腺細胞之基因例如水離子通道基因、鈉鉀離子通道基因之表現都大幅提高,因此可推定原本骨髓幹細胞朝間葉細胞分化之方向被改變成往類上皮細胞唾液腺細胞分化。 結論: 本研究首度證實原本的假說,不論在體外或體內,利用共同培養,由中胚層而來的骨髓幹細胞都有能力轉分化為類唾腺細胞,並且可促進唾液腺再生。唾腺細胞原本則是從外胚層所起源。由骨髓幹細胞轉分化而來的類唾腺細胞從基因到蛋白質的層級都表現出唾液腺細胞特殊的澱粉酶之功能表現。本研究亦由基因微陣列晶片的大量分析結果探測骨髓幹細胞分化成類唾液腺細胞之基因變化。另一方面,從動物實驗的結果,在接受鈷60照射使唾腺受損後,給予細胞療法可發現類唾腺細胞表現出比骨髓幹細胞更優異的細胞治療效果,可幫助唾液腺的組織再生使受損的腺體回復重量、功能恢復並讓減低的唾液量重新恢復、更進一步使得消化咀嚼功能變好而讓全身體重恢復近正常標準。由統計更顯示了利用類唾液腺細胞比起骨髓幹細胞將有更直接快速的治療效果。關於小鼠唾液腺之型態,本研究亦是第一次利用多光子顯微鏡做到活體觀察,追蹤植入幹細胞之分布。 | zh_TW |
dc.description.abstract | Background: There are still no effective solutions for atrophic salivary glands caused by autoimmune disease or radiation therapies for cancers. Hyposalivation results in severe dental problems reducing patients’ long-term life quality. Recent reports demonstrated that bone marrow stem cells have a great potential for transdifferentiating into different cells. We hypothesized that bone marrow stem cells can be transdifferentiated into salivary acinar cells for glands regeneration.
The purposes of this study were as follows: (1) to investigate the potentials of bone marrow stem cells transdifferentiating into salivary acinar cells (2) to investigate the effects of cell therapy for glands regeneration (3) to observe long term distributions of bone marrow stem cells transplanted into salivary glands (4) to discover the whole genome change of bone marrow stem cell transdifferentiated into salivary acinar cells. Methods: bone marrow stem cells were acquired from 4-week-old rats and cocultured with submandibular glands acinar cells. Indirect coculture was preceded by culture inserts to separate these 2 kinds of cells. Bone marrow stem cells were on lower wells and acinar cells were on upper inserts; media could help signal compunctions through 0.4μm insert-membrane pores. Direct coculture was preceded by labeling bone marrow stem cells with DiI or Rhodamine-conjugated nanoparticles for cell-tracking. Immunocytochemical stains were performed to examine the changes after coculture. Next, mouse bone marrow stem cells were labeled with cationic lipid-coated ultra small superparamagnetic iron oxide nanoparticles and direct cocultured with acinar cells to obtain labeled acinar-like cells; both bone marrow stem cells and acinar-like cells were examined their therapeutic effects in the animal study. Total 140 severe combined immune deficiency mice were divided into 4 groups: (1) normal salivary glands mice, (2) mice received irradiation around their head-and-neck areas to cause atrophic glands (3) mice received irradiation and intra-gland transplantation with labeled bone marrow stem cells or (4) labeled acinar-like cells. Evaluations of glands functions were performed in all groups after cell therapy. Besides, distributions of bone marrow stem cells transplanted into glands were explored by specific designed equipments for in-vivo observation with the multiphoton laser fluorescence microscopy. The observation also assisted in examining transdifferentiation of bone marrow stem cells. Finally, microarray analyses were performed to examine the whole genome change of transdifferentiated bone marrow stem cells. Results: After coculture, bone marrow stem cells were transdifferentiated into acinar-like cells with expressions of α-amylase protein, gene, and starch- digestion function. The animal study showed that damaged salivary glands with reduction in saliva production, body weight loss and gland weight loss due to irradiation can be rescued by cell therapy. For recovery of saliva production, cell therapy with acinar-like cells was significantly better than those with bone marrow stem cells. Transdifferentiation into acinar-like cells in-vivo was also noted by immunocytochemical staining. Besides, we designed specific equipments for in-vivo observation. By multiphoton laser fluorescence microscopy, distributions of transplanted cells could be observed directly. We also found that gene expressions of bone marrow stem cells related with mesenchymal characteristics were down regulated after coculture. In contrast, genes related with acinar cells such as water channels, sodium/potassium ions channels were unregulated. Conclusion: This study is the first report demonstrating that bone marrow stem cells originated from the mesoderm are capable of transdifferentiating into acinar-like cells in-vitro and in-vivo. Acinar-like cells derived from bone marrow stem cells showed similarities from gene level to true function as salivary acinar cells originated from the ectoderm. Microarray analyses also confirmed this transdifferentiation. From animal study, acinar-like cells have better therapeutic effects in salivary glands regeneration. This study was also the first report for in-vivo observation of mice salivary glands with cell tracking of transplanted bone marrow stem cells. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T07:08:45Z (GMT). No. of bitstreams: 1 ntu-99-F94422010-1.pdf: 3714476 bytes, checksum: 1530cd5a99f454e548bead1996d375ea (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 142 | |
dc.language.iso | en | |
dc.title | 利用幹細胞達成唾液腺再生 | zh_TW |
dc.title | Application of Stem Cells for Salivary Glands Regeneration | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林俊彬(Chun-Pin Lin),張富雄(Fu-Hsiung Chang),廖保鑫(Pao-Hsin Liao),林劭品(Shau-Ping Lin) | |
dc.subject.keyword | 骨髓幹細胞,類唾液腺細胞,共同培養,細胞轉分化,奈米粒子,多光子雷射螢光顯微鏡,基因微陣列晶片,唾液腺功能低下,唾液腺再生, | zh_TW |
dc.subject.keyword | bone marrow stem cells,acinar-like cells,coculture,cell transdifferentiation,nanoparticles,multiphoton laser fluorescence microscopy,microarray analysis,hyposalivation,salivary glands regeneration, | en |
dc.relation.page | 123 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-10-25 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 3.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。