請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48684
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李致毅 | |
dc.contributor.author | Ke-Chung Wu | en |
dc.contributor.author | 吳克中 | zh_TW |
dc.date.accessioned | 2021-06-15T07:08:19Z | - |
dc.date.available | 2015-11-15 | |
dc.date.copyright | 2010-11-15 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-11-03 | |
dc.identifier.citation | [1] 40Gb/s and 100Gb/s Ethernet Task Force, IEEE P802.3ba [Online]. Available: http://www.ieee802.org/3/ba/index.html
[2] M. Nowell et al., “Overview of Requirements and Applications for 40 Gigabit and 100 Gigabit Ethernet,” Ethernet Alliance, Aug. 2007. [3] C. Cole et al., “100GbE-Optical LAN Technologies,” IEEE Communication Magazine, vol. 45, pp. 12-19, Dec. 2007. [4] QNAP Systems. [Online]. Available: http://www.qnap.com [5] Stone Bond Technologies. [Online]. Available: http://www.stonebond.com [6] Juniper Networks. [Online]. Available: http://www.juniper.net [7] S. Galal and B. Razavi, “40-Gb/s Amplifier and ESD Protection Circuit in 0.18-μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 2389-2396, Dec. 2004. [8] J. Kim, et al., “Circuit Techniques for a 40Gb/s Transmitter in 0.13μm CMOS,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 150-151, Feb. 2005. [9] J. Lee and K-C. Wu, “A 20-Gb/s Full-Rate Linear CDR Circuit with Automatic Frequency Acquisition,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 3590-3602, Dec. 2009. [10] C. Kromer et al., “A 25-Gb/s CDR in 90-nm CMOS for High-Density Interconnects,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2921-2929, Dec. 2006. [11] K. Kanda et al., “40Gb/s 4:1 MUX/1:4 DEMUX in 90nm Standard CMOS,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 152-153, Feb. 2005. [12] J-K. Kim et al., “A Fully Integrated 0.13-μm CMOS 40-Gb/s Serial Link Transceiver,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 1510-1521, May 2009. [13] B-G. Kim et al., “A 20 Gb/s 1:4 DEMUX without Inductors and Low-Power Divide-by-2 Circuit in 0.13 μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 541-549, Feb. 2008. [14] A. Ong et al., “A 40 − 43-Gb/s Clock and Data Recovery IC With Integrated SFI-5 1:16 Demultiplexer in SiGe Technology,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2155-2168, Dec. 2003. [15] S. Kaeriyama et al., “A 40 Gb/s Multi-Data-Rate CMOS Transmitter and Receiver Chipset With SFI-5 Interface for Optical Transmission Systems,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 3568-3579, Dec. 2009. [16] Serdes Framer Interface Level 5 (SFI-5): Implementation Agreement for 40 Gb/s Interface for Physical Layer Devices. Optical Internetworking Forum, 2002 [Online]. Available: http://www.oiforum.com/public/documents/OIF-SFI5-01.0.pdf [17] H. Banba et al., “A CMOS Bandgap Reference Circuit with Sub-1-V Operation,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 670-674, May 1999. [18] P. Yue and M. Rodwell, “mm-Wave IC Design: The Transition from III-V to CMOS Circuit Techniques,” Short Course, RF and High Speed CMOS, IEEE Compound Semiconductor IC symposium (CSIC), Nov. 2006. [19] Y. M. Greshishchev and P. Schvan, “SiGe Clock and Data Recovery IC with Linear-Type PLL for 10-Gb/s SONET Application,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1353-1359, Sep. 2000. [20] J. D. H. Alexander, “Clock Recovery from Random Binary Data,” Electronics Letters, vol. 11, pp. 541-542, Oct. 1975. [21] C. R. Hogge, “A Self-Correcting Clock Recovery Circuit,” IEEE J. Lightwave Tech., vol. 3, pp. 1312-1314, Dec. 1985. [22] J. Savoj and B. Razavi, “A 10-Gb/s CMOS Clock and Data Recovery Circuit with a Half-Rate Linear Phase Detector ,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 761-768, May 2001. [23] H. Noguchi et al., “A 40-Gb/s CDR Circuit With Adaptive Decision-Point Control Based on Eye-Opening Monitor Feedback,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 2929-2938, Dec. 2008. [24] Y. Amamiya et al., “A 40Gb/s Multi-Data-Rate CMOS Transceiver Chipset with SFI-5 Interface for Optical Transmission Systems,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 358-359, Feb. 2009. [25] A. Pottbacker et al., “A Si Bipolar Phase and Frequency Detector for Clock Extraction up to 8 Gb/s,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 1747-1751, Dec. 1992. [26] S. B. Anand and B. Razavi, “A 2.75Gb/s CMOS Clock Recovery Circuit with Broad Capture Range,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 214-215, Feb. 2001. [27] J. Savoj and B. Razavi, “A 10-Gb/s CMOS Clock and Data Recovery Circuit With a Half-Rate Binary Phase/Frequency Detector,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 13-21, Jan. 2003. [28] B. Razavi, Design of Integrated Circuits for Optical Communications. New York, NY: McGraw-Hill, 2002. [29] J. C. Scheytt et al., “A 0.155, 0.622, and 2.488 Gb/s Automatic Bit Rate Selecting Clock and Data Recovery IC for Bit Rate Transparent SDH Systems,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 348-349, Feb. 1999. [30] J. Lee and B. Razavi, “A 40-Gb/s Clock and Data Recovery Circuit in 0.18-μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2181-2190, Dec. 2003. [31] J. Lee, “High-Speed Circuit Designs for Transmitters in Broadband Data Links,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 1004-1015, May 2006. [32] L. DeVito et al., “A 52MHz and 155MHz Clock-Recovery PLL,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 142-143, Feb. 1991. [33] J. Lee et al., “A 75-GHz Phase-Locked Loop in 90-nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 1414-1426, Jun. 2008. [34] S. C. Chan et al., “Distributed Differential Oscillators for Global Clock Networks,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2083-2094, Sep. 2006. [35] A. P. Jose and K. L. Shepard, “Distributed Loss-Compensation Techniques for Energy-Efficient Low-Latency On-Chip Communication,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1415-1424, Jun. 2007. [36] B. Razavi, Principles of Data Conversion System Design. Piscataway, NJ: IEEE PRESS, 1995. [37] J. Lee and M. Liu, “20-Gb/s Burst-Mode Clock and Data Recovery Circuit Using Injection-Locking Technique,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 619-630, Mar. 2008. [38] J. Takasoh et al., “A 12.5Gbps Half-Rate CMOS CDR Circuit for 10Gbps Network Applications,” Digest of Symposium on VLSI Circuits, pp. 268-271, Jun. 2004. [39] Y. Ohtomo et al., “A 12.5-Gb/s Parallel Phase Detection Clock and Data Recovery Circuit in 0.13-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2052-2057, Sep. 2006. [40] R. J. Bayrum et al., “A 3GHz 12-Channel Time-Division Multiplexer -Demultiplexer Chip Set,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 192-193, Feb. 1986. [41] S. Pellerano et al., “A 4.75-GHz Fractional Frequency Divider-by-1.25 With TDC-Based All-Digital Spur Calibration in 45-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 3422-3433, Dec. 2009. [42] C-W. Lo and H. C. Luong, “A 1.5-V 900-MHz Monolithic CMOS Fast -Switching Frequency Synthesizer for Wireless Applications,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 459-470, Apr. 2002. [43] E. Tournier et al., “High-Speed Dual-Modulus Prescaler Architecture for Programmable Digital Frequency Dividers,” IEE Electron. Lett., pp. 1433-1434, Nov. 2001. [44] B. Razavi, Design of Analog CMOS Integrated Circuits. New York, NY: McGraw-Hill, 2001. [45] J. Lee, “A 20-Gb/s Adaptive Equalizer in 0.13-μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2058-2066, Sep. 2006. [46] IEEE Std 802.3ae, IEEE Standard for Information technology -Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48684 | - |
dc.description.abstract | 100-Gb/s乙太網路為下一代乙太網路系統所推行之標準,其應用同時包含了伺服器運算與網路聚集等範圍。本篇論文提出一可應用於100-Gb/s乙太網路系統之2 × 25-Gb/s接收機,以65奈米CMOS製程所設計。雖然相對於系統所採用的四通道架構,此接收機只已雙通道方式實現,但由於不同通道間的資料傳輸處理是彼此獨立的,因此雙通道的操作方式是可完全相容於四通道的架構。此接收機主要包含了三個有線通訊接收端的關鍵元件,分別是限幅放大器、時脈與資料回復電路、解多工器。首先,兩個相同的25-Gb/s限幅放大器具有高增益以及高頻寬,使其輸出信號能有夠大的振幅以及最小的自生時脈抖動。同時我們提出一新的偏壓技術,減低因製程或溫度變化所造成之放大器增益頻寬變異。接著為兩個全速架構且低功耗之時脈資料回復電路,它採用了混波器架構之線性相位偵測器,以及自動頻率鎖定技巧。在相位偵測器中,我們藉由將時脈信號與資料轉態脈衝信號進行混波,其輸出結果會正比於相位誤差,使之可以達到高速操作的能力。在頻率探測迴路中,利用了不同相位的資料信號去獲取頻率偏差的資訊,而非利用時脈信號,並免除了外部參考時脈信號。最後,此接收器電路整合了一高速的二比五解多工器(包括了一內建之時脈產生器)。此分數比例之解多工是以一高效能之兩步驟轉換方式實現。此雙通道接收器使用1.2伏特之供應電壓,消耗功率為510毫瓦,在位元錯誤率小於10^−12的情況下,可以達到20峰對峰毫伏特之輸入敏感度。 | zh_TW |
dc.description.abstract | The 100-Gb/s Ethernet (100GbE) is the next generation's Ethernet standard, which aims at the applications of both server computing and network aggregation. In this dissertation, a 2 × 25-Gb/s receiver for 100GbE has been implemented in 65-nm CMOS technology. Although only 2 channels are implemented, this receiver provides exactly the same operation as a 4-channel one while dealing with independent channels. It is mainly composed of three critical components of a wireline receiver, limiting amplifier, clock and data recovery (CDR), and demultiplexer (DMUX). Two identical 25-Gb/s limiting amplifiers provide high-gain and broad-bandwidth to achieve a large output swing with minimum inherent jitter. A novel regulation mechanism is applied to the limiting amplifiers to minimize its gain and bandwidth variations. Two low-power full-rate CDRs employ mixer-type linear phase detectors and automatic frequency locking techniques. The phase detector achieves high-speed operation by mixing the clock with the data-transition pulses, providing output proportional to the phase error. The frequency acquisition loop utilizes the data phases rather than the clock phases to distill the frequency difference, and no external reference is used in this design. A high-speed 2:5 DMUX circuit (with a built-in clock generator) is also integrated. The fractional-ratio demultiplexing is realized by an efficient two-step conversion scheme. This two-channel receiver achieves BER < 10^−12 with 20-mVpp input sensitivity while consuming a total power of 510 mW from a 1.2-V supply. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T07:08:19Z (GMT). No. of bitstreams: 1 ntu-99-F94943012-1.pdf: 5958422 bytes, checksum: fc113d6868e1f6238b7591f010c187ba (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 摘要 I
Abstract III Contents V List of Figures VII List of Tables XI Chapter 1 Introduction 1 1.1 Overview of Optical Communication 1 1.2 100-Gb/s Ethernet 5 1.3 Dissertation Organization 11 Chapter 2 Receiver Architecture 13 2.1 Introduction 13 2.2 Architecture 16 Chapter 3 Limiting Amplifier 19 3.1 General Consideration 19 3.2 Proposed Architecture 20 3.3 Gain-Regulating Bias Circuit 23 3.4 Bandgap Reference 25 3.5 Conclusion 26 Chapter 4 Clock and Data Recovery Circuit 29 4.1 Introduction 29 4.2 CDR Architecture 33 4.3 Building Blocks 46 4.4 Experimental Results 55 4.5 Conclusion and Modification on the Receiver 60 Chapter 5 2:5 Demultiplexer 63 5.1 General Considerations 63 5.2 Demultiplexer Architecture 64 5.3 Clock Generator 70 Chapter 6 Experimental Results 75 Chapter 7 Conclusion 85 Bibliography 87 Publication List 93 | |
dc.language.iso | en | |
dc.title | 應用於100Gb/s乙太網路系統之CMOS寬頻接收機 | zh_TW |
dc.title | A CMOS Broadband Receiver for 100-Gb/s Ethernet System | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 汪重光,劉深淵,吳介琮,陳巍仁 | |
dc.subject.keyword | 千億位元乙太網路,能帶間隙參考電壓,位元錯誤率,時脈資料回復電路,時脈倍頻單元,解多工器,偏移消除電路,除頻器,抖動容忍度,限幅放大器, | zh_TW |
dc.subject.keyword | 100 GbE,bandgap reference,bit error rate (BER),clock and data recovery (CDR),clock multiplication unit (CMU),demultiplexer (DMUX),deskew circuit,divider,jitter tolerance,limiting amplifier (LA), | en |
dc.relation.page | 93 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-11-04 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 5.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。