請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48665
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭振華(Jen-Hwa Guo) | |
dc.contributor.author | Yu-Lung Ma | en |
dc.contributor.author | 馬玉龍 | zh_TW |
dc.date.accessioned | 2021-06-15T07:07:18Z | - |
dc.date.available | 2010-12-10 | |
dc.date.copyright | 2010-12-10 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-11-17 | |
dc.identifier.citation | [1]. M. R. Patel, “wind and solar power system-design, analysis, and operation,” second edition, 2005
[2]. J. J Loferski, “Recent research on photovoltaic solar energy converters,” Proceedings of the IEEE, 2005 [3]. G. Walker, “Evaluating MPPT Converter topologies using a MATLAB PV model,” Journal of Electrical and Electronics Engineering, Vol. 21, No.1, pp.49-55, 2001 [4]. J. A. Duffie, W. A. Beckman, “Solar engineering of thermal processes,” third edition, John Wiley & Sons Inc, New York, 2006 [5]. H. C. Hottel, “A Simple Model for Estimating the Transmittance of Direct Solar Radiation Through Clear Atmospheres,” Solar Energy, Vol.18, pp.129-137, 1976. [6]. Y. H. Benjamin, Liu and R. C. Jordan, “The interrelationship and characteristic distribution of direct, diffuse and total solar radiation,” Solar Energy, Vol.4, pp.1-19, 1960. [7]. L.L. Bucciarelli, B.L. Grossman, E.F. Lyon and N.E. Rasmussen, “The energy balance associated with the use of a maximum power tracker in a 100 kW-peak power system,” 14th IEEE photovoltaic specialist conference, 1980. [8]. B. K. Bose, P. M. Szezesny, and R. L. Steigerwald, “Microcontroller control of residential photovoltaic power conditioning system,” IEEE Trans. Ind. Applicat, vol. IA-21, pp. 1182–1191, 1985. [9]. K. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photovoltaic power tracking: An algorithm for rapidly changing atmosphere conditions,” in Proc. Inst. Elect. Eng., vol. 142, pp. 59–64, Jan. 1995. [10]. M. Silberberg, “Chemistry: The Molecular Nature of Matter and Change, 4th Ed,” New York (NY): McGraw-Hill Education, p-935, 2006. [11]. MRS Website: “Theme Article - Science and Applications of Mixed Conductors for Lithium Batteries,” http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=2932&DID=173328. [12].S. Piller, M. Perrin, A. Jossen, “Methods for state-of-charge determination and their applications,” Journal of Power Souce, 2001 [13]. G. L. Plett, “Advances in EKF SOC Estimation for LiPB HEV Battery Packs,” University of Colorado at Colorado Springs and consultant to Compact Power Inc. [14]. J. Morales, J. L. Martınez, et al, “Power consumption modeling of skid-steer tracked mobile robots on rigid terrain,” IEEE Transactions on Robotics, vol. 25, no. 5, pp. 1098–1108, 2009. [15]. A. M. Bradley, M. D. Feezor, H. Signh, and FY Sorrell, “Power systems for autonomous underwater vehicles,” IEEE J. Oceanic Eng., vol. 26, pp. 526–538, 2001 [16]. N. Baldock, and M. R. Mokhtarzadeh-Dehghan, “A study of solar-powered, high-altitude unmanned aerial vehicles,” Aircraft Engineering and Aerospace Technology, vol. 78(3), pp.187-193, 2006. [17]. J. Jalbert, D. Blidberg and M. Ageev, “Some design considerations for a solar powered AUV: Energy management and its impact on operational characteristics,” Unmanned Systems, vol.15, pp. 26–31, 1997. [18]. J. S. Willcox, J. Bellingham, Y. Zhang and A. Baggeroer, 'Performance metrics for oceanographic surveys with autonomous underwater vehicles,' IEEE Journal of Ocean Engineering, vol.26, pp. 711, 2001. [19]. J. S. Willcox, “Oceanographic surveys with autonomous underwater vehicles: Performance metrics and survey design,” master’s thesis, Massachusetts Institute of Technology, Feb 1998 [20]. M.F. Mysorewala, “Simultaneous robot localization and mapping of parameterized spatio-temporal fields using multi-scale adaptive sampling,” Ph.D. thesis, The University of Texas at Arlington, 2008. [21]. R. L. Bras and R. I. Ignacio, “Random Functions and Hydrology,” Dover Publications, Mineola, N.Y., 1993. [22] J. M. Mejia and R.I. Ignacio, 'On the synthesis of random field sampling from the spectrum: An application to the generation of hydrologic spatial processes,' Water Resources Research, vol. 10, no. 4, pp. 705-11, 1974 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48665 | - |
dc.description.abstract | 太陽能發電系統是由太陽能板,負載及儲能裝置所組成,配合上合適的電力管理方法,此系統便能獨立的進行運作。本研究旨在開發一台搭載太陽能輔助電力的智慧型無人船舶(ASC),考慮太陽板所能產生之電力,並評估其電力對探測任務之影響。本文首先簡介太陽能發電系統中各個物件之特性,利用此特性估測出不同時間點下太陽能板的發電量,以及智慧型無人船舶執行探測任務時所需耗費之電量,並針對其任務提出合適的探測空間解析度及總探測時間,最後加入誤差之估測理論,考慮探測空間解析度以及總探測時間對探測結果之效應,結合兩者發展出一套可以估測其探測誤差大小的方法,同時利用隨機場模擬並確認此誤差分析方法之可行性。最後使用太陽能驅動無人船舶在河道中施行水深量測,驗證本文所提出之探測誤差估測方法之正確性。 | zh_TW |
dc.description.abstract | A solar power system is composed of the Photovoltaic (PV) cell, load and energy storage device. The power system can be operated independently with an appropriate energy management. In this study, an autonomous surface craft (ASC) with a solar power system was developed. Survey mission accuracy was evaluated by considering the energy available from its solar panels. This article first briefly mentions the characteristic of components in a solar power system. Then estimation of the solar power generation in a day time and the energy consumption of ASC during a survey mission were formulated. The estimation theory of survey error is employed by taking into account of the effect caused by spatial resolution, and the total survey time parameters. The feasibility of the survey error prediction was then demonstrated by random field simulations. Finally, the ASC was used to conduct survey mission in a river bank to verify the proposed survey error prediction algorithm. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T07:07:18Z (GMT). No. of bitstreams: 1 ntu-99-R97525017-1.pdf: 6077159 bytes, checksum: 8e5093a5b6022804bed2d7ef775d41df (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | CHAPTER 1 1
Introduction 1 1.1 MOTIVATION 1 1.2 LITERATURE REVIEW 2 1.3 THESIS ORGANIZATION 4 CHAPTER 2 6 Stand-Alone Solar Power System 6 2.1 PHOTOVOLTAIC CELL 6 2.2 CHARACTERISTIC OF LI-ION BATTERY 10 2.3 CHARACTERISTIC OF LOAD 15 CHAPTER 3 20 Solar Energy Generating System 20 3.1 SUN MOVING TRACK 21 3.2 SUN RADIATION 23 3.3 POWER GENERATION SIMULATION 28 CHAPTER 4 34 Energy Consumption 34 4.1 SURVEY ENERGY CONSUMPTION 34 4.2 FLOW VELOCITY EFFECT 42 CHAPTER 5 55 Survey Error Simulation 55 5.1 ERROR ANALYSIS 55 5.1.1 Spatial Survey Error 56 5.1.2 Temporal Survey Error 61 5.1.3 Total Survey Error 63 5.2 SURVEY ANALYSIS PLOT 64 5.3 RANDOM FIELD SIMULATION AND SURVEY ERROR VERIFICATION 69 5.3.1 Process Simulation 70 5.3.2 Survey Path Simulation 74 5.3.3 Survey Error Calculation 80 5.3.4 Application 85 CHAPTER 6 88 Experiment 88 6.1 ESTIMATION OF AVAILABLE SOLAR ENERGY 88 6.2 SURVEY PATH AND RESOLUTION DESIGN 92 6.3 EXPERIMENT IN DAJIA RIVERSIDE PARK 98 CHAPTER 7 104 Conclusion 104 REFERENCES 105 | |
dc.language.iso | en | |
dc.title | 太陽能無人船探測路徑規劃及誤差分析之研究 | zh_TW |
dc.title | Oceanographic Survey Design and Error Analysis for a Solar-Powered Autonomous Surface Craft | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林顯群,江茂雄 | |
dc.subject.keyword | 太陽能,無人船舶,海洋調查,路徑規劃,誤差分析,隨機場, | zh_TW |
dc.subject.keyword | solar energy,autonomous surface craft,oceanographic survey,path planning,error analysis,random field, | en |
dc.relation.page | 108 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-11-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 5.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。