請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48655完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許永真 | |
| dc.contributor.author | Jong-Chuan Lee | en |
| dc.contributor.author | 李中川 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:06:48Z | - |
| dc.date.available | 2014-12-10 | |
| dc.date.copyright | 2010-12-10 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-11-18 | |
| dc.identifier.citation | [1] L. von Ahn and L. Dabbish. Labeling images with a computer game. In CHI ’04: Proceedings
of the SIGCHI conference on Human factors in computing systems, pages 319– 326, New York, NY, USA, 2004. ACM Press. [2] L. von Ahn, R. Liu, and M. Blum. Peekaboom: a game for locating objects in images. In CHI ’06: Proceedings of the SIGCHI conference on Human Factors in computing systems, pages 55–64, New York, NY, USA, 2006. ACM Press. 38 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48655 | - |
| dc.description.abstract | 隨著網際網路的普及,人力協同運算(human computation)應運而生。然而全
球20億的網路使用者,各自具備不同的背景能力; 以目前人力協同運算系統的隨 機分工方式,使用者不易達成共識, 也難以針對其擅長的領域做貢獻,降低系統 的效率。 為了解決這個問題,我們利用推薦系統(recommender system)中的協同過濾 方法(collaborative filtering), 針對使用者的參與記錄,匹配適當的同伴 與其擅長領域的問題。我們以Luis von Ahn教授設計的ESP Game為本,在Amazon Mechanical Turk人力平台上邀集910人參與共4757場遊戲。實驗結果驗證藉由推 薦系統提供使用者最佳配對,能提高人力協同運算的效率。 | zh_TW |
| dc.description.abstract | With the popularity of the Internet, humancomputation came into being. However,
there are 20 million Internet users from the whole world, each with a different background skills. Current human computation system with random division of labor making users hard to reach a consensus with each other and contribute on their expert domains reduces the efàciency of the system. To solve this problem, we use the collaborative f iltering approach of recommendersystem to match the appropriate partner and the problem in their expert domain with user history. Based on professor Luis von Ahn’s ESPGame, we design the experiment on the crowdsourcing platform – AmazonMechanicalTurk. And total 910 users involve and 4757 games are record. Experimental results demonstrate that the recommender system provide users the perfect match and improve the efàciency of human computation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:06:48Z (GMT). No. of bitstreams: 1 ntu-99-R97944029-1.pdf: 3320390 bytes, checksum: f73fdd79715306265171fe8821fa1232 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Abstract i
Chapter 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Research Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 2 Related work 5 2.1 Human Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 The incentive . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Data Intergrated and Veriàcation . . . . . . . . . . . . . . . . 8 2.1.3 Pairing Users and Problems . . . . . . . . . . . . . . . . . . . 9 2.2 Recommender System . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Demographic Approach . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Content-based Filtering Approach . . . . . . . . . . . . . . . 10 2.2.3 Collaborative Filtering Approach . . . . . . . . . . . . . . . . 10 iv Chapter 3 Human Computation System 13 3.1 Human Computation system . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 System Archetecure . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.2 System Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Problem Deànition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Notation Deànition . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.1 Adaptive Environment Engine (AEE) . . . . . . . . . . . . . . 15 3.3.2 AEE as a Recommender System Problem . . . . . . . . . . . . 15 3.3.3 Strategy Analysis: A Game Theoretic Approach . . . . . . . . 15 Chapter 4 Adaptive Environment Engine with Recommender System 17 4.1 Adaptive Environment Engine . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Collaborative Filtering Algorithm . . . . . . . . . . . . . . . . . . . . 18 4.3 Adaptive Environment Engine with Collaborative Filtering . . . . . . 19 4.3.1 Adaptively Select Partner, Randomly Select Problem . . . . . . 21 4.3.2 Adaptively Select Partner and Problem . . . . . . . . . . . . . 21 Chapter 5 Experimental Design and Evaluation 23 5.1 Experimental Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2.1 Introduction to the ESP Game . . . . . . . . . . . . . . . . . . 24 5.2.2 Implementation to the ESP Game . . . . . . . . . . . . . . . . 25 5.2.3 The Human Computation System in the Experiment . . . . . . 26 5.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 28 v 5.3.1 Evaluation Critiria . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3.2 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3.3 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Chapter 6 Conclusion and Future Work 35 6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 36 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Bibliography 38 | |
| dc.language.iso | zh-TW | |
| dc.subject | 推薦系統 | zh_TW |
| dc.subject | 人力協同運算 | zh_TW |
| dc.subject | 協同過濾 | zh_TW |
| dc.subject | ESP Game | zh_TW |
| dc.subject | Mechanical Turk | zh_TW |
| dc.subject | ESP Game | en |
| dc.subject | human computation | en |
| dc.subject | Mechanical Turk | en |
| dc.subject | collaborative filtering | en |
| dc.subject | recommender system | en |
| dc.title | 協同過濾推薦最佳配對於人力運算效能改進之研究 | zh_TW |
| dc.title | Recommending the Perfect Match: Performance Improvement of Human Computation by Collaborative Filtering | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林光龍,陳伶志,李育杰 | |
| dc.subject.keyword | 人力協同運算,推薦系統,協同過濾,ESP Game,Mechanical Turk, | zh_TW |
| dc.subject.keyword | human computation,collaborative filtering,recommender system,ESP Game,Mechanical Turk, | en |
| dc.relation.page | 44 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-11-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
