請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48647
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴明詔(Michael M. C. Lai) | |
dc.contributor.author | Tsai-Ling Liao | en |
dc.contributor.author | 廖采苓 | zh_TW |
dc.date.accessioned | 2021-06-15T07:06:23Z | - |
dc.date.available | 2016-03-03 | |
dc.date.copyright | 2011-03-03 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-11-25 | |
dc.identifier.citation | Albo C, Valencia A, Portela A (1995) Identification of an RNA binding region within the N-terminal third of the influenza A virus nucleoprotein. J Virol 69: 3799-3806
Bieniasz PD (2006) Late budding domains and host proteins in enveloped virus release. Virology 344: 55-63 Biswas SK, Boutz PL, Nayak DP (1998) Influenza Virus Nucleoprotein Interacts with Influenza Virus Polymerase Proteins. J Virol 72: 5493-5501 Bres V, Kiernan RE, Linares LK, Chable-Bessia C, Plechakova O, Treand C, Emiliani S, Peloponese J-M, Jeang K-T, Coux O, Scheffner M, Benkirane M (2003) A non-proteolytic role for ubiquitin in Tat-mediated transactivation of the HIV-1 promoter. Nat Cell Biol 5: 754-761 Bright RA, Shay DK, Shu B, Cox NJ, Klimov AI (2006) Adamantane resistance among influenza A viruses isolated early during the 2005-2006 influena season in the United States. J Am Med Assoc 295: 891-894 C.D.C. (2009) Outbreak of swine-origin influenza A (H1N1) virus infection - Mexico, March-April 2009. MMWR Morb Mortal Wkly Rep 58: 467-470 Chan AY, Vreede FT, Smith M, Engelhardt OG, Fodor E (2006) Influenza virus inhibits RNA polymerase II elongation. Virology 351: 210-217 Claas ECJ, Osterhaus ADME, van Beek R, De Jong JC, Rimmelzwaan GF, Senne DA, Krauss S, Shortridge KF, Webster RG (1998) Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. The Lancet 351: 472-477 Das K, Aramini JM, Ma L-C, Krug RM, Arnold E (2010) Structures of influenza A proteins and insights into antiviral drug targets. Nat Struct Mol Biol 17: 530-538 Deng T, Engelhardt OG, Thomas B, Akoulitchev AV, Brownlee GG, Fodor E (2006) Role of Ran Binding Protein 5 in Nuclear Import and Assembly of the Influenza Virus RNA Polymerase Complex. J Virol 80: 11911-11919 Deng T, Sharps J, Fodor E, Brownlee GG (2005) In Vitro Assembly of PB2 with a PB1-PA Dimer Supports a New Model of Assembly of Influenza A Virus Polymerase Subunits into a Functional Trimeric Complex. J Virol 79: 8669-8674 Digard P, Elton D, Bishop K, Medcalf E, Weeds A, Pope B (1999) Modulation of Nuclear Localization of the Influenza Virus Nucleoprotein through Interaction with Actin Filaments. J Virol 73: 2222-2231 Elton D, Simpson-Holley M, Archer K, Medcalf L, Hallam R, McCauley J, Digard P (2001) Interaction of the Influenza Virus Nucleoprotein with the Cellular CRM1-Mediated Nuclear Export Pathway. J Virol 75: 408-419 Engelhardt OG, Smith M, Fodor E (2005) Association of the Influenza A Virus RNA-Dependent RNA Polymerase with Cellular RNA Polymerase II. J Virol 79: 5812-5818 Everett RD, Meredith M, Orr A, Cross A, Kathoria M, Parkinson J (1997) A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J 16: 1519-1530 Fodor E, Smith M (2004) The PA Subunit Is Required for Efficient Nuclear Accumulation of the PB1 Subunit of the Influenza A Virus RNA Polymerase Complex. J Virol 78: 9144-9153 Galarza J, Sowa A, Hill VM, Skorko R, Summers DF (1992) Influenza A virus NP protein expressed in insect cells by a recombinant baculovirus is associated with a protein kinase activity and possesses single-stranded RNA binding activity. Virus Research 24: 91-106 Gong JZ, Fang H, Li MY, Liu Y, Yang KH, Liu YZ, Xu WF (2009) Potential Targets and Their Relevant Inhibitors in Anti-influenza Fields. Curr Med Chem 16: 3716-3739 Hao L, Sakurai A, Watanabe T, Sorensen E, Nidom CA, Newton MA, Ahlquist P, Kawaoka Y (2008) Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature 454: 890-893 Hicke L (2001) Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2: 195-201 Hien TT, Liem NT, Dung NT, San LT, Mai PP, Chau NvV, Suu PT, Dong VC, Mai LTQ, Thi NT, Khoa DB, Phat LP, Truong NT, Long HT, Tung CV, Giang LT, Tho ND, Nga LH, Tien NTK, San LH, Tuan LV, Dolecek C, Thanh TT, de Jong M, Schultsz C, Cheng P, Lim W, Horby P, the World Health Organization International Avian Influenza Investigative Team, Farrar J (2004) Avian Influenza A (H5N1) in 10 Patients in Vietnam. N Engl J Med 350: 1179-1188 Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: Study of protein and DNA interactions. Nucleic Acids Research 16: 7351-7367 Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proceedings of the National Academy of Sciences of the United States of America 97: 6108-6113 Holowaty MN, Frappier L (2004) HAUSP/USP7 as an Epstein-Barr virus target. Biochem Soc Trans 32: 731-732 Honda A, Ueda K, Nagata K, Ishihama A (1988) RNA Polymerase of Influenza Virus: Role of NP in RNA Chain Elongation. J Biochem 104: 1021-1026 Huang TS, Palese P, Krystal M (1990) Determination of influenza virus proteins required for genome replication. J Virol 64: 5669-5673 Huarte M, Sanz-Ezquerro JJ, Roncal F, Ortin J, Nieto A (2001) PA Subunit from Influenza Virus Polymerase Complex Interacts with a Cellular Protein with Homology to a Family of Transcriptional Activators. J Virol 75: 8597-8604 Hsiang T-Y, Zhao C, Krug RM (2009) Interferon-Induced ISG15 Conjugation Inhibits Influenza A Virus Gene Expression and Replication in Human Cells. J Virol 83: 5971-5977 Hsu MT, Parvin JD, Gupta S, Krystal M, Palese P (1987) Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proceedings of the National Academy of Sciences of the United States of America 84: 8140-8144 Ideguchi H, Ueda A, Tanaka M, Yang J, Tsuji T, Ohno S, Hagiwara E, Aoki A, Ishigatsubo Y (2002) Structural and functional characterization of the USP11 deubiquitinating enzyme, which interacts with the RanGTP-associated protein RanBPM. Biochem J 367: 87-95 Jäger S, Gottwein E, Krausslich H-G (2007) Ubiquitination of Human Immunodeficiency Virus Type 1 Gag Is Highly Dependent on Gag Membrane Association. J Virol 81: 9193-9201 Kannouche PL, Wing J, Lehmann AR (2004) Interaction of Human DNA Polymerase η with Monoubiquitinated PCNA: A Possible Mechanism for the Polymerase Switch in Response to DNA Damage. Molecular Cell 14: 491-500 Karlas A, Machuy N, Shin Y, Pleissner K-P, Artarini A, Heuer D, Becker D, Khalil H, Ogilvie LA, Hess S, Maurer AP, Muller E, Wolff T, Rudel T, Meyer TF (2010) Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463: 818-822 Kawaguchi A, Nagata K (2007) De novo replication of the influenza virus RNA genome is regulated by DNA replicative helicase, MCM. The EMBO Journal 26: 4566-4575 Khor R, McElroy LJ, Whittaker GR. (2003) The Ubiquitin-Vacuolar Protein Sorting System is Selectively Required During Entry of Influenza Virus into Host Cells. Traffic. Blackwell Publishing Limited, Vol. 4, pp. 857-868. Kiso M, Mitamura K, Sakai-Tagawa Y, Shiraishi K, Kawakami C, Kimura K, Hayden FG, Sugaya N, Kawaoka Y (2004) Resistant influenza A viruses in children treated with oseltamivir: descriptive study. The Lancet 364: 759-765 Klumpp K, Ruigrok RWH, Baudin F (1997) Roles of the influenza virus polymerase and nucleoprotein in forming a functioal RNP structure. EMBO J 16: 1248-1257 König R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, Bhattacharyya S, Alamares JG, Tscherne DM, Ortigoza MB, Liang Y, Gao Q, Andrews SE, Bandyopadhyay S, De Jesus P, Tu BP, Pache L, Shih C, Orth A, Bonamy G, Miraglia L, Ideker T, Garcia-Sastre A, Young JAT, Palese P, Shaw ML, Chanda SK (2010) Human host factors required for influenza virus replication. Nature 463: 813-817 Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, Sultana H, Brass AL, Adametz R, Tsui M, Qian F, Montgomery RR, Lev S, Mason PW, Koski RA, Elledge SJ, Xavier RJ, Agaisse H, Fikrig E (2008) RNA interference screen for human genes associated with West Nile virus infection. Nature 455: 242-245 Lenschow DJ, Lai C, Frias-Staheli N, Giannakopoulos NV, Lutz A, Wolff T, Osiak A, Levine B, Schmidt RE, García-Sastre A, Leib DA, Pekosz A, Knobeloch K-P, Horak I, Virgin HW (2007) IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proceedings of the National Academy of Sciences 104: 1371-1376 Li Q, Brass AL, Ng A, Hu Z, Xavier RJ, Liang TJ, Elledge SJ (2009a) A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proceedings of the National Academy of Sciences 106: 16410-16415 Li Z, Watanabe T, Hatta M, Watanabe S, Nanbo A, Ozawa M, Kakugawa S, Shimojima M, Yamada S, Neumann G, Kawaoka Y (2009b) Mutational Analysis of Conserved Amino Acids in the Influenza A Virus Nucleoprotein. J Virol 83: 4153-4162 Lin C-H, Chang H-S, Yu WCY (2008) USP11 Stabilizes HPV-16E7 and Further Modulates the E7 Biological Activity. J Biol Chem 283: 15681-15688 Lindner HA (2007) Deubiquitination in virus infection. Virology 362: 245-256 Margo KL, Shaughnessy AF (1998) Antiviral drugs in healthy children. . Am Fam Physician 57: 1073-1077 Mayer D, Molawi K, Martínez-Sobrido L, Ghanem A, Thomas S, Baginsky S, Grossmann J, García-Sastre A, Schwemmle M (2007) Identification of Cellular Interaction Partners of the Influenza Virus Ribonucleoprotein Complex and Polymerase Complex Using Proteomic-Based Approaches. Journal of Proteome Research 6: 672-682 Medcalf L, Poole E, Elton D, Digard P (1999) Temperature-Sensitive Lesions in Two Influenza A Viruses Defective for Replicative Transcription Disrupt RNA Binding by the Nucleoprotein. J Virol 73: 7349-7356 Mello CC, Conte D (2004) Revealing the world of RNA interference. Nature 431: 338-342 Momose F, Basler CF, O'Neill RE, Iwamatsu A, Palese P, Nagata K (2001) Cellular Splicing Factor RAF-2p48/NPI-5/BAT1/UAP56 Interacts with the Influenza Virus Nucleoprotein and Enhances Viral RNA Synthesis. J Virol 75: 1899-1908 Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y, Nagata K (2002) Identification of Hsp90 as a Stimulatory Host Factor Involved in Influenza Virus RNA Synthesis. J Biol Chem 277: 45306-45314 Mukaigawa J, Nayak DP (1991) Two signals mediate nuclear localization of influenza virus (A/WSN/33) polymerase basic protein 2. J Virol 65: 245-253 Mungall BA, Xu X, Klimov A (2003) Assaying susceptibility of avian and other influenza A viruses to zanamivir: comparison of fluorescent and chemiliminescent neuraminidase assays. Avian Dis 47: 1141-1144 Naito T, Momose F, Kawaguchi A, Nagata K (2007) Involvement of Hsp90 in Assembly and Nuclear Import of Influenza Virus RNA Polymerase Subunits. J Virol 81: 1339-1349 Nath ST, Nayak DP (1990) Function of two discrete regions is required for nuclear localization of polymerase basic protein 1 of A/WSN/33 influenza virus (H1 N1). Mol Cell Biol 10: 4139-4145 Neumann G, GG B, Fodor E, Kawaoka Y (2004) Orthomyxovirus replication, transcription and polyadenylation. Curr Top Microbiol Immunol 283: 121-143 Newcomb LL, Kuo R-L, Ye Q, Jiang Y, Tao YJ, Krug RM (2009) Interaction of the Influenza A Virus Nucleocapsid Protein with the Viral RNA Polymerase Potentiates Unprimed Viral RNA Replication. J Virol 83: 29-36 Nieto A, de la Luna S, Barcena J, Portela A, Ortin J (1994) Complex structure of the nuclear translocation signal of influenza virus polymerase PA subunit. J Gen Virol 75: 29-36 Noah DL, Krug RM, Karl M, Aaron JS (2005) Influenza Virus Virulence and Its Molecular Determinants. In Advances in Virus Research Vol. Volume 65, pp 121-145. Academic Press Núria Jorba, Silvia Juarez, Eva Torreira, Pablo Gastaminza, Noelia Zamarreno, Juan Pablo Albar, Juan Ortin (2008) Analysis of the interaction of influenza virus polymerase complex with human cell factors. Proteomics 8: 2077-2088 Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus ADME, Fouchier RAM (2006) Global Patterns of Influenza A Virus in Wild Birds. Science 312: 384-388 O'Neill RE, Jaskunas R, Blobel Gt, Palese P, Moroianu J (1995a) Nuclear Import of Influenza Virus RNA Can Be Mediated by Viral Nucleoprotein and Transport Factors Required for Protein Import. J Biol Chem 270: 22701-22704 O'Neill RE, Palese P (1995b) NPI-1, the human homolog of SRP-1, Interacts with influenza virus nucleoprotein. Virology 206: 116-125 Oxford JS, Mann A, Lambkin R (2003) A designer drug against influenza: the NA inhibitor oseltamivir (Tamiflu). Expert Rev Anti Infe 1: 337-342 Patricia R-I, Jorba N, Zamarreno N, Fernandez Y, Juarez S, Ortin J (2008) The host-dependent interaction of alpha-importins with influenza PB2 polymerase subunit is required for virus RNA replication PLoS ONE 3: e3904 Peloponese J-M, Jr., Iha H, Yedavalli VRK, Miyazato A, Li Y, Haller K, Benkirane M, Jeang K-T (2004) Ubiquitination of Human T-Cell Leukemia Virus Type 1 Tax Modulates Its Activity. J Virol 78: 11686-11695 Perez JT, Varble A, Sachidanandam R, Zlatev I, Manoharan M, García-Sastre A, tenOever BR (2010) Influenza A virus-generated small RNAs regulate the switch from transcription to replication. Proceedings of the National Academy of Sciences 107: 11525-11530 Perez-Gonzalez A, Rodriguez A, Huarte M, Salanueva IJ, Nieto A (2006) hCLE/CGI-99, a Human Protein that Interacts with the Influenza Virus Polymerase, Is a mRNA Transcription Modulator. Journal of Molecular Biology 362: 887-900 Poole E, Elton D, Medcalf L, Digard P (2004) Functional domains of the influenza A virus PB2 protein: identification of NP- and PB1-binding sites. Virology 321: 120-133 Portela A, Digard P (2002) The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. J Gen Virol 83: 723-734 Regoes RR, Bonhoeffer S (2006) Emergence of Drug-Resistant Influenza Virus: Population Dynamical Considerations. Science 312: 389-391 Rodriguez A, Perez-Gonzalez A, Nieto A (2007) Influenza Virus Infection Causes Specific Degradation of the Largest Subunit of Cellular RNA Polymerase II. J Virol 81: 5315-5324 Schoenfeld AR, Apgar S, Dolios G, Wang R, Aaronson SA (2004) BRCA2 Is Ubiquitinated In Vivo and Interacts with USP11, a Deubiquitinating Enzyme That Exhibits Prosurvival Function in the Cellular Response to DNA Damage. Mol Cell Biol 24: 7444-7455 Scholtissek C, Becht H (1971) Binding of Ribonucleic Acids to the RNP-antigen Protein of Influenza Viruses. J Gen Virol 10: 11-16 Shapiro GI, Krug RM (1988) Influenza virus RNA replication in vitro: synthesis of viral template RNAs and virion RNAs in the absence of an added primer. J Virol 62: 2285-2290 Shaw ML, Stone KL, Colangelo CM, Gulcicek EE, Palese P (2008) Cellular Proteins in Influenza Virus Particles. PLoS Pathog 4: e1000085 Si X, Gao G, Wong J, Wang Y, Zhang J, Luo H (2008) Ubiquitination is required for effective replication of Coxsackievirus B3. PLoS ONE 3: 1-8 Skorko R, Summers DF, Galarza J (1991) Influenza A virus in vitro transcription; roles of NS1 and NP proteins in regulating RNA synthesis. Virology 180: 668-677 Swanson D, Freund C, Ploder L, McInnes R, Valle D (1996) A ubiquitin C-terminal hydrolase gene on the proximal short arm of the X chromosome: implications for X-linked retinal disorders. Hum Mol Genet 5: 533-538 To K-F, Paul K.S. Chan, Kui-Fat Chan, Wai-Ki Lee, Woon-Yee Lam, Kit-Fai Wong, Nelson L.S. Tang, Dominic N.C. Tsang, Rita Y.T. Sung, Thomas A. Buckley, John S. Tam, Augustine F. Cheng (2001) Pathology of fatal human infection associated with avian influenza A H5N1 virus. Journal of Medical Virology 63: 242-246 Tseng C-H, Jeng K-S, Lai MMC (2008) Transcription of Subgenomic mRNA of Hepatitis Delta Virus Requires a Modified Hepatitis Delta Antigen That Is Distinct from Antigenomic RNA Synthesis. J Virol 82: 9409-9416 Ungchusak K, Auewarakul P, Dowell SF, Kitphati R, Auwanit W, Puthavathana P, Uiprasertkul M, Boonnak K, Pittayawonganon C, Cox NJ, Zaki SR, Thawatsupha P, Chittaganpitch M, Khontong R, Simmerman JM, Chunsutthiwat S (2005) Probable Person-to-Person Transmission of Avian Influenza A (H5N1). N Engl J Med 352: 333-340 Vreede FT, Jung TE, Brownlee GG (2004) Model Suggesting that Replication of Influenza Virus Is Regulated by Stabilization of Replicative Intermediates. J Virol 78: 9568-9572 Wasilenko JL, Sarmento L, Pantin-Jackwood MJ (2009) A single substitution in amino acid 184 of the NP protein alters the replication and pathogenicity of H5N1 avian influenza viruses in chickens. Arch Virol 154: 969-979 Watanabe, T., S. Watanabe, and Y. Kawaoka. 2010. Cellular Networks Involved in the Influenza Virus Life Cycle. Cell Host & Microbe 7:427-439 Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiological Reviews 56: 152-179 Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2: 169-178 Welchman RL, Gordon C, Mayer RJ (2005) Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6: 599-609 Wright PF, Neumann G, Kawaoka Y (2007) Orthomyxoviruses. In Fields virology, Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds), 5th edn, pp 1691-1740. Lippincott Williams & Wilkins, Philadelphia, PA. Yamaguchi T, Kimura J, Miki Y, Yoshida K (2007) The Deubiquitinating Enzyme USP11 Controls an IκB Kinase α (IKKα)-p53 Signaling Pathway in Response to Tumor Necrosis Factor α (TNFα). J Biol Chem 282: 33943-33948 Yamanaka K, Ishihama A, Nagata K (1990) Reconstitution of influenza virus RNA-nucleoprotein complexes structurally resembling native viral ribonucleoprotein cores. J Biol Chem 265: 11151-11155 Ye Q, Krug RM, Tao YJ (2006) The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 444: 1078-1082 Ye Z, Liu T, Offringa DP, McInnis J, Levandowski RA (1999) Association of Influenza Virus Matrix Protein with Ribonucleoproteins. J Virol 73: 7467-7473 Yu G-Y, Lai MMC (2005) The Ubiquitin-Proteasome System Facilitates the Transfer of Murine Coronavirus from Endosome to Cytoplasm during Virus Entry. J Virol 79: 644-648 Yuan W, Krug RM (2001) Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J 20: 362-371 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48647 | - |
dc.description.abstract | 本研究成功建立一套in vitro cell-based 高效能RNAi 篩選系統,並利用此系統篩選到與A型流感病毒感染相關之宿主細胞蛋白USP11。由實驗結果顯示,USP11與抑制病毒RNA複製有關,因此當USP11表現受到抑制,病毒RNA可大量複製;反之,當USP11大量表現,則病毒RNA複製受到抑制。由進一步的實驗結果證明此抑制作用是與USP11的去泛素酵素活性有關。免疫沉澱實驗結果顯示USP11可與病毒蛋白PB2,PA及NP進行交互作用,其中更發現NP是單泛素化修飾蛋白(mono-ubiquitinated protein),其修飾位點是胺基酸K184,而K184位於NP蛋白與病毒RNA結合位置。由實驗結果顯示當K184突變而無法進行泛素化修飾時,會影響NP與RNA的結合能力,進而使病毒的RNA複製效率下降。而宿主細胞則藉由USP11將NP蛋白去泛素化而使病毒RNA複製受到抑制。由本實驗結果推論,A型流感病毒核蛋白NP可藉由泛素化/去泛素化修飾來進行病毒RNA複製機制的調控。 | zh_TW |
dc.description.abstract | Influenza A virus RNA replication requires an intricate regulatory network involving viral and cellular proteins. Here we examined the roles of cellular ubiquitinating/deubiquitinating enzymes (DUBs). We found that down-regulation of a cellular deubiquitinating enzyme USP11 resulted in enhanced virus production, suggesting that USP11 could inhibit influenza virus replication. Conversely, over-expression of USP11 inhibited specifically viral genomic RNA replication, and this inhibition required the deubiquitinase activity. Furthermore, we showed that USP11 interacted with PB2, PA and NP of viral RNA replication complex, and that NP is a mono-ubiquitinated protein and can be deubiquitinated by USP11 in vivo. Finally, we identified K184 as the ubiquitination site on NP and this residue is crucial for virus RNA replication. We propose that ubiquitination/deubiquitination of NP can be manipulated for antiviral therapeutic purposes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T07:06:23Z (GMT). No. of bitstreams: 1 ntu-99-D94445001-1.pdf: 8797918 bytes, checksum: 0730661e7ea3e8f14ba54f0a33f0e200 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii Acknowledgments iii 中文摘要 iv Abstract v Chapter1. Introduction 1 Chapter2. Results 10 Chapter3. Discussion 25 Chapter4. Conclusion 33 Chapter5. Materials and Methods 34 Chapter6. Figures 41 Chapter7. Tables 59 References 68 Appendix 83 Figure S1 83 The papers associated with this study 85 1. The EMBO Journal papers 85 2. A-IMBN Highlights report 97 | |
dc.language.iso | en | |
dc.title | A型流感病毒核蛋白泛素化/去泛素化修飾與病毒核醣核酸複製調控機制之研究 | zh_TW |
dc.title | Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳培哲,廖經倫,施信如,林宜玲 | |
dc.subject.keyword | A型流感病毒,核蛋白,泛素化,RNA複製,USP11, | zh_TW |
dc.subject.keyword | influenza A virus,NP,ubiquitination,RNA replication,USP11, | en |
dc.relation.page | 98 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-11-26 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 8.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。