請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48643
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇金佳 | |
dc.contributor.author | Hou-Hua Su | en |
dc.contributor.author | 蘇厚華 | zh_TW |
dc.date.accessioned | 2021-06-15T07:06:11Z | - |
dc.date.available | 2010-12-10 | |
dc.date.copyright | 2010-12-10 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-11-29 | |
dc.identifier.citation | 【1】薛康琳, 《燃料電池內的電化學反應-觸媒與反應動力》, 中國化學會化學季刊, 第62卷第1期, 第149-156頁, 2004。
【2】李秋煌, 黃瓊輝, 林萃, 《燃料重組器系統概論》, 石油季刊, 第39卷第4期, 第45-62頁, 2003. 【3】D. J. Seo, W. L. Yoon, Y. G. Yoon, S. H. Park, G. G. Park & C. S. Kim, “Development of a Micro Fuel Processor for PEMFCs,” Electrochim. Acta, Vol. 50, pp. 719-723, 2004. 【4】吳國華, 《超音波霧化於燃料電池甲醇重組器製氫之研究》, 碩士論文, 國立成功大學航空太空工程研究所, 2003。 【5】Kazushi Yoshida, Shuji Tanaka, Hisashi Hiraki1 & Masayoshi Esashi, “A micro fuel reformer integrated with a combustor and a microchannel evaporator,” J. Micromech. Microeng. ,Vol..16 , pp. S191–S197, 2006. 【6】J. M. Sohn, Y. C. Byun, J. Y. Cho, J. Choe, K. H. Song, “Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol,” Int. J. of Hydrogen Energy, Vol. 32, pp.5103 – 5108, 2007. 【7】R. F. Horng, H. M. Chou, C. H. Lee & H. T. Tsai, “Characteristics of hydrogen produced by partial oxidation and auto-thermal reforming in a small methanol reformer,” J. of Power Sources, Vol. 166, pp.1225-1233, 2006. 【8】M. Conte, P.P. Prosini & S. Passerini, “Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials,” Materials Science and Engineering B, Vol. 108, p.p 2–8, 2004. 【9】國際財經新聞中心整理,《卡西歐開發全球最小燃料電池》, 工商時報, 第七版, 2004/5/11。 【10】林慰捷,《微小型燃料重組器與高溫質子交換膜燃料電池整合研究》, 元智大學機械工程學系, 2009。 【11】J. K. Lee, J. B. Ko, D. H. Kim, “Methanol steam reforming over Cu/ZnO/Al2O3 catalyst:kinetics and effectiveness factor,” Applied Catalysis A: General, Vol. 278, pp.25–35, 2004. 【12】C. Y. Hsueh, H. S. Chu & W. M. Yan, “Numerical study on micro-reformer performance and local transport phenomena of the plate methanol steam micro-reformer,” J. of Power Sources, Vol. 187, pp.535–543, 2009. 【13】J. Park, S. Lee, S. Lim & J. Bae, “Heat flux analysis of a cylindrical steam reformer by a modified Nusselt number,” Int. J. of Hydrogen Energy, Vol.3 4, pp. 1828 – 1834, 2009. 【14】F. Chen, M. H. Chang, C. Y. Kuo, C. Y. Hsueh & W. M. Yan, “Analysis of a Plate-Type Microreformer for Methanol Steam Reforming Reaction,” Energy Fuels, Vol. 23, pp.5092–5098, 2009. 【15】潘丞煜, 《氧化鋯溶膠洗積甲醇蒸氣重組催化劑於微流道反應器之研究》, 碩士論文, 元智大學化學工程與材料科學學系, 2009。 【16】V. Meille, “Review on methods to deposit catalysts on structured surfaces”, Applied Catalysis A: General, Vol. 315, pp.1-17, 2006. 【17】C. Baltes, S. Vukojevic, F. Schuth, “Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis”, J. of Catalysis, Vol. 258, pp. 334-344, 2008. 【18】H. G. El-Shobaky, M. Mokhtar, G. A. El-Shobaky, “Physicochemical surface and catalytic properties of CuO-ZnO/Al2O3 system”, Applied Catalysis A: General, Vol. 180, pp. 335-344, 1999. 【19】G. Fierro, M. L. Jacono, M. Inversi , P. Porta, F. Cioci, R. Lavecchia, “Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction”, Applied Catalysis A: General, Vol. 137, pp. 327-348, 1996. 【20】C.J. Jiang, D.L. Trimm, M.S. Wainwright, “Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO- catalyst”, Applied Catalysis A: General, Vol. 97, pp. 145-158, 1993. 【21】C. J. Jiang, D. L. Trimm, M. S. Wainwright, “Kinetic study of steam reforming of methanol over copper-based catalysts”, Applied Catalysis A: General, Vol. 93, pp. 245-255, 1993. 【22】G.A. E1-Shobaky, G.A. Fagal, M. Mokhtar, “Effect of ZnO on surface and catalytic properties of system”, Applied Catalysis A: General, Vol. 155, pp.167-178, 1997. 【23】Y. Kawamura, K. Yamamoto, N. Ogura , T. Katsumata, A. Igarashi, “Preparation of CuO/ZnO/Al2O3 catalyst for a micro methanol reformer”, J. of Power Sources, Vol. 150, pp. 20-26, 2005. 【24】J. P. Breen & J. R.H. Ross, “Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts”, Catalysis Today, Vol. 51, pp. 521-533, 1999. 【25】C. Y. Huang, Y. M. Sun, C. Y. Chou & C. C. Su, “Performance of catalysts CuO-ZnO-Al2O3, CuO-ZnO-Al2O3-Pt-Rh, and Pt-Rh in a small reformer for hydrogen generation,” J. of Power Sources, Vol. 166, pp.450–457, 2007. 【26】T. Kim, D. H. Lee, D. E. Park & S. Kwon, “Micromachined Methanol Reformer for Portable PEM Fuel Cells,” J. of Fuel Cell Science and Technology, Vol. 5, pp. 011008-1 – 011008-6, 2008. 【27】B. Lindstrom & L. J. Pettersson, “Deactivation of copper-based catalysts for fuel cell applications”, Catalysis Letters , Vol. 74, pp. 27-30, 2001. 【28】S. Henpraserttae, P. Limthongkul, P. Toochinda, “The role of urea in Cu–Zn–Al catalysts for methanol steam reforming”, Monatsh Chem, Vol. 141, pp. 269-277, 2010. 【29】A. V. Pattekar & M. V. Kothare, ” A microreactor for hydrogen production in micro fuel cell applications,” J. of Microelectromechanical Systems, Vol. 13, pp.7-18 , 2004. 【30】G. G. Park, D. J. Seo, S. H. Park, Y.G. Yoon, C. S. Kim & W. L. Yoon, “Development of microchannel methanol steam reformer,” Chemical Engineering J., Vol. 101, pp.87-92 , 2004. 【31】L. Pan & S. Wang, “Methanol steam reforming in a compact plate-fin reformer for fuel-cell systems,” Int. J. of Hydrogen Energy, Vol. 30, pp.973 – 979, 2005. 【32】G. G. Park, S. D. Yim, Y. G. Yoon, C. S. Kim, D. J. Seo & K. Eguchi, “Hydrogen production with integrated microchannel fuel processor using methanol for portable fuel cell systems,” Catalysis Today, Vol. 110, pp.108–113, 2005. 【33】D. E. Park, , T. Kim, S. Kwon, C. K. Kim & E. Yoon, “Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells,” Sensors and Actuators A: Physical, Vol.135, pp.58-66, 2007. 【34】J. S. Suh, M. T. Lee, R. Greif & C. P. Grigoropoulos, “Transport phenomena in a steam-methanol reforming microreactor with internal heating,” Int. j. of hydrogen energy, Vol. 34, pp. 314-322, 2009. 【35】T. Kim & S. Kwon, “MEMS fuel cell system integrated with a methanol reformer for a portable power source,” Sensors and Actuators A , Vol. 154, pp. 204–211, 2009. 【36】陳宗成, 《微型甲醇重組器參數與性能研究》, 碩士論文, 國立台灣大學工學院機械工程學系, 2009。 【37】Y. T. Seo, D. J. Seo, J. H. Jeong & W. L. Yoon , “Design of an integrated fuel processor for residential PEMFCs applications,” J. of Power Sources, Vol.160, pp.505–509, 2006. 【38】T. Terazaki , M. Nomura, K. Takeyama, O. Nakamura & T. Yamamoto, “Development of multi-layered microreactor with methanol reformer for small PEMFC,” J. of Power Sources, Vol. 145, pp. 691–696, 2005. 【39】Y. Men, G. Kolb, R. Zapf, D. Tiemann, M. Wichert, V. Hessel & H. Lowe, “A complete miniaturized microstructured methanol fuel processor/fuel cell system for low power applications,” Int. J. of Hydrogen Energy, Vol. 33, pp.1374 – 1382, 2008. 【40】P.C. Hulteberg, H. Burford, K. Duraiswamy, B. Porter & R. Woods, “A cost effective steam reformer for a distributed hydrogen infrastructure,” Int. J. of Hydrogen Energy, Vol. 33, pp. 1266 – 1274, 2008. 【41】K. Shah & R.S. Besser, “Understanding thermal integration issues and heat loss pathways in a planar microscale fuel processor: Demonstration of an integrated silicon microreactor-based methanol steam reformer,” Chemical Engineering Journal ,Vol.135S , pp.S46–S56, 2008. 【42】M. S. Wilson, “Methanol decomposition fuel processor for portable power applications,” Int. J. of Hydrogen Energy, Vol. 3 4, pp.2955 – 2964, 2009. 【43】S. Z. Mikhail & W. R. Kimel, “Densities and Viscosities of Methanol-Water Mixtures”, J.of Chem. Eng. Data, Vol. 6, pp. 533-537, 1961. 【44】Y. Choi & H. G. Stenger, “Kinetics, simulation and optimization of methanol steam reformer for fuel cell applications”, J. Power Sources, Vol. 142, pp. 81-91, 2005. 【45】黃智勇, 《實驗研究小型重組器產氫之性能》, 博士論文, 國立台灣大學機械工程研究所, 2007。 【46】B. Hohlein, M. Bee, J. Bogild-Hansen, P. Brockerhoff, G. Colsnman, B. Emonts, R. Menzer, E. Riedel, “Hydrogen from Methanol for Fuel Cells in Mobile Systems:Development of a Compact Reformer”, J. Power Sources Vol. 611, pp. 143-147, 1996. 【47】J. Bravo, A. Karim, T. Conant, G. P. Lopez, A. Datye, “Wall coating of a CuO/ZnO/Al2O3 methanol steam reforming catalyst for micro-channel reformers”, Chemical Engineering Journal , Vol. 101, pp. 113-121, 2004. 【48】H. Purnama , T. Ressler, R. E. Jentoft, H. Soerijanto, R. Schlogl, R. Schomacker, “CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst”, Applied Catalysis A: General , Vol. 259, pp. 83–94, 2004. 【49】J. Agrell, H. Birgersson, M. Boutonnet, “Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation”, J. of Power Sources, Vol. 106, pp. 249–257, 2002. 【50】林志益, 《微渠道內單相/兩相流及熱傳之實驗研究》, 博士論文, 國立中山大學機械與機電工程學系研究所, 2009。 【51】黃建華, 《優先氧化法對微型重組器去除CO之效應》, 碩士論文, 國立台灣大學機械工程研究所, 2009。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48643 | - |
dc.description.abstract | PEMFC可以應用於微型燃料電池,原因是PEMFC電力密度高,而唯一要克服的是它需要攜帶足夠的氫氣能源。現代甲醇微型重組器可克服氫氣攜帶量的瓶頸,而重組可以利用適當的觸媒改善,其關鍵技術為甲醇重組觸媒種類與塗佈、反應器流道設計及系統控制。
本研究設計甲醇蒸氣重組器,流道尺寸為330μm ×200μm,總長900mm。塗佈觸媒 。參數為反應溫度、進料率與甲醇水溶液濃度。 實驗結果顯示,在實驗設定之220度-320度區間,隨著反應溫度增加,甲醇轉化率與氫氣產生率均大幅提升。在320度時,甲醇進料率 1μl/min,其轉化率接近16%,最高合成氣產量為260μl,相當於0.04W的電力。甲醇濃度效應中,相對於其他水對甲醇比S/C=1.2、1.4、1.8,S/C=1.6都有較好之甲醇轉化率表現。在進料率方面,甲醇轉化率隨著甲醇進料率調升而降低,氫氣產生率則沒有太多改變。反應時間至多只有24秒,欲提升此反應器效率,還需加長反應器流道長度,增加觸媒的塗佈量,並提高流道的密合性。 | zh_TW |
dc.description.abstract | PEMFC may be applied in micro-scale fuel cell for its high density of energy. However, the disadvantage of the difficulty in storing gaseous hydrogen in the PEMFC system must be overcome. Fortunately, the problem may be solved by a fuel-processing system for generating hydrogen through the reformation of liquid methanol. The reforming process may be greatly improved by the use of some proper catalysts. The key points for the reformer are the type and amount of the catalyst, the design of the reacting channel, and the control of the processing system.
In this research, it designed a methanol steam reformer with the channel dimensions of 330μm ×200μm,and a length of 900mm. The catalyst coated on the grooves of reformer is . The parameters include reaction temperature, feed rate, and concentration of methanol water solution. The experimental results show the methanol conversion rate increase with reaction temperature raise at 220-320℃. When reaction temperature at 320℃, and feed rate at 1μl/min , it causes that the methanol conversion rate reaches 16% approximately, and syngas production rate reaches 260μl/ min,equivalent to 0.04W for electric power. For the effect of methanol concentration, molar steam-to-carbon ratio 1.6 has better methanol conversion rate compared with others S/C=1.2, 1.4, and 1.8. For different feed rate, methanol conversion rate decreases when feed rate increase, but hydrogen production rate has no obvious influence. Reaction time has 24 seconds at most. If the efficiency of reformer want to be improved, length of reformer channel should be lengthened, weight of catalyst should be increased, and channel must be more airtight than usual. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T07:06:11Z (GMT). No. of bitstreams: 1 ntu-99-R97522109-1.pdf: 2917212 bytes, checksum: 450db443efdd85be66fa0c378dcf4d17 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 摘要 I
Abstaract II 目錄 III 表目錄 i 圖目錄 ii 符號說明 v 第一章 緒論 1 1.1. 前言 1 1.2. 燃料電池 1 1.2.1. 質子交換膜燃料電池 (Proton Exchange Membrane Full Cell, PEMFC) 2 1.2.2. 直接甲醇燃料電池 (Direct Methanol Fuel Cell, DMFC) 2 1.2.3. 鹼性燃料電池(Alkaline Fuel Cell, AFC ) 2 1.2.4. 磷酸燃料電池(Phosphoric Acid Fuel Cell, PAFC) 3 1.2.5. 熔融碳酸鹽燃料電池 (Molten Carbonate Full Cell, MCFC) 3 1.2.6. 固態氧化物燃料電池 (Solid Oxide Full Cell, SOFC) 3 1.3. 甲醇重組器 3 1.3.1. 蒸氣重組法(Steam Reforming, SR) 4 1.3.2. 部份氧化法(Partial Oxidation) 5 1.3.3. 自發熱重組法(Autothermal Reforming, ATR) 6 1.4. 微型重組器 6 1.5. 研究動機 7 第二章 文獻回顧 8 2.1. 甲醇重組器數值模擬 8 2.2. 甲醇重組器觸媒塗佈技術 10 2.3. 甲醇重組器銅系觸媒 11 2.4. 微型甲醇重組器 13 2.5. 系統整合 16 第三章 實驗設備 19 3.1. 甲醇水溶液供應系統 19 3.1.1. 甲醇水溶液儲存槽(Methanol Solution Tank) 19 3.1.2. 微幫浦(Micro Pump) 19 3.1.3. 管柱加熱器(Column Heater) 20 3.2. 反應器系統 20 3.2.1. 加熱片 20 3.2.2. 變壓器 20 3.2.3. 隔熱裝置 20 3.2.4. 防漏環(O-ring) 21 3.3. 蒸氣重組器觸媒 21 3.4. 反應器 22 3.4.1. 第一層 22 3.4.2. 第二層 23 3.4.3. 第三層 23 3.4.4. 第四層 24 3.4.5. 第五層 24 3.4.6. 第六層 24 3.5. 管線系統 24 3.5.1. 逆止閥 25 3.5.2. 針型閥(Needle Valve) 25 3.5.3. 氣體過濾器(Air Filter) 25 3.6. 偵測系統 25 3.6.1. 熱偶線(Thermocouple) 25 3.6.2. 溫度顯示器及控制器 26 3.6.3. 微流量計(Mass Flow Meter) 26 3.6.4. 氣相層析儀(Gas Chromatography, GC) 26 3.7. 實驗程序 27 3.8. 研究過程遭遇問題與解決方法 28 第四章 結果與討論 30 4.1. 甲醇轉化率的計算 30 4.2. 溫度效應 31 4.3. S/C效應 33 4.4. 空間時間效應 34 4.5. 合成氣產率 36 第五章 結論與建議 38 5.1. 結論 38 5.2. 建議 39 參考文獻 41 附表 48 附圖 54 附錄A 誤差分析92 | |
dc.language.iso | zh-TW | |
dc.title | 某微型甲醇重組器設計與性能分析 | zh_TW |
dc.title | Design and Performance Analysis of a Methanol Reformer of Micro-type | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃智勇,李昭仁,李奕昇 | |
dc.subject.keyword | 質子交換膜燃料電池,氫,微型重組器,觸媒, | zh_TW |
dc.subject.keyword | PEMFC,micro reformer,methanol,steam reforming,hydrogen, | en |
dc.relation.page | 96 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-11-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 2.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。