請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48631完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾國藩(Guo-Fang Tseng) | |
| dc.contributor.author | Li-Jin Chen | en |
| dc.contributor.author | 陳儷今 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:05:34Z | - |
| dc.date.available | 2011-03-03 | |
| dc.date.copyright | 2011-03-03 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-12-04 | |
| dc.identifier.citation | Abe, T., Black, P.M. and Foley, L. (1984). Changes in parenchymal and ventricular pressure with experimental epidural compression. Surg. Neurol. 22, 477-480.
Ahmad, F.J., Yu, W., McNally, F.J. and Baas, P.W. (1999). An essential role for katanin in severing microtubules in the neuron. J. Cell Biol. 145, 305-315. Alonso, A.C., Grundke-Iqbal, I. and Iqbal, K. (1996). Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat. Med. 2, 783-787. Alonso, A.C., Grundke-Iqbal, I., Barra, H.S. and Iqbal, K. (1997). Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc. Natl. Acad. Sci. U. S. A. 94, 298-303. Arendt, T., Stieler, J., Strijkstra, A.M., Hut, R.A., Rudiger, J., Van der Zee, E.A., Harkany, T., Holzer, M. and Hartig, W. (2003). Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J. Neurosci. 23, 6972-6981. Baas, P.W., Karabay, A. and Qiang, L. (2005). Microtubules cut and run. Trends Cell Biol. 15, 518-524. Baas, P.W. and Qiang, L. (2005). Neuronal microtubules: when the MAP is the roadblock. Trends Cell Biol. 15, 183-187. Bennecib, M., Gong, C.X., Grundke-Iqbal, I. and Iqbal, K. (2000). Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Lett. 485, 87-93. Bennecib, M., Gong, C.X., Grundke-Iqbal, I. and Iqbal, K. (2001). Inhibition of PP-2A upregulates CaMKII in rat forebrain and induces hyperphosphorylation of tau at Ser 262/356. FEBS Lett. 490, 15-22. Bjorkblom, B., Ostman, N., Hongisto, V., Komarovski, V., Filen, J.J., Nyman, T.A., Kallunki, T., Courtney, M.J. and Coffey, E.T. (2005). Constitutively active cytoplasmic c-Jun N-terminal kinase 1 is a dominant regulator of dendritic architecture: role of microtubule-associated protein 2 as an effector. J. Neurosci. 25, 6350-6361. Boucher, M., Belanger, D., Beaulieu, C. and Leclerc, N. (1999). Tau-mediated process outgrowth is differentially altered by the expression of MAP2b and MAP2c in Sf9 cells. Cell Motil. Cytoskeleton 42, 257-273. Braak, E. and Braak, H. (1997). Alzheimer's disease: transiently developing dendritic changes in pyramidal cells of sector CA1 of the Ammon's horn. Acta Neuropathol (Berl) 93, 323-325. Brion, J.P., Octave, J.N. and Couck, A.M. (1994). Distribution of the phosphorylated microtubule-associated protein tau in developing cortical neurons. Neuroscience 63, 895-909. Brugg, B. and Matus, A. (1991). Phosphorylation determines the binding of microtubule-associated protein 2 (MAP2) to microtubules in living cells. J. Cell Biol. 114, 735-743. Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A. and Hof, P.R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain research 33, 95-130. Caceres, A., Banker, G., Steward, O., Binder, L. and Payne, M. (1984). MAP2 is localized to the dendrites of hippocampal neurons which develop in culture. Brain Res. 315, 314-318. Caceres, A., Banker, G.A. and Binder, L. (1986). Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture. J. Neurosci. 6, 714-722. Castejon, O.J. and Arismendi, G.J. (2003). Morphological changes of dendrites in the human edematous cerebral cortex. A transmission electron microscopic study. J Submicrosc Cytol Pathol 35, 395-413. Castejon, O.J., Valero, C. and Diaz, M. (1995). Synaptic degenerative changes in human traumatic brain edema. An electron microscopic study of cerebral cortical biopsies. J. Neurosurg. Sci. 39, 47-65. Chen, J.R., Wang, T.J., Wang, Y.J. and Tseng, G.F. (2010). The immediate large-scale dendritic plasticity of cortical pyramidal neurons subjected to acute epidural compression. Neuroscience 167, 414-427. Chen, J.R., Wang, Y.J. and Tseng, G.F. (2003). The effect of epidural compression on cerebral cortex: a rat model. J. Neurotrauma 20, 767-780. Chen, J.R., Wang, Y.J. and Tseng, G.F. (2004). The effects of decompression and exogenous NGF on compressed cerebral cortex. J. Neurotrauma 21, 1640-1651. Cohen, P. (1999). The Croonian Lecture 1998. Identification of a protein kinase cascade of major importance in insulin signal transduction. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354, 485-495. Collins, V.P. (2004). Brain tumours: classification and genes. J. Neurol. Neurosurg. Psychiatry 75 Suppl 2, ii2-11. Dajani, R., Fraser, E., Roe, S.M., Young, N., Good, V., Dale, T.C. and Pearl, L.H. (2001). Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 105, 721-732. Dehmelt, L. and Halpain, S. (2005). The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6, 204. Diaz-Nido, J., Montoro, R.J., Lopez-Barneo, J. and Avila, J. (1993). High external potassium induces an increase in the phosphorylation of the cytoskeletal protein MAP2 in rat hippocampal slices. Eur. J. Neurosci. 5, 818-824. Doble, B.W. and Woodgett, J.R. (2003). GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175-1186. Feng, Q., Cheng, B., Yang, R., Sun, F.Y. and Zhu, C.Q. (2005). Dynamic changes of phosphorylated tau in mouse hippocampus after cold water stress. Neurosci. Lett. 388, 13-16. Fitzpatrick, M.O., Dewar, D., Teasdale, G.M. and Graham, D.I. (1998). The neuronal cytoskeleton in acute brain injury. Br. J. Neurosurg. 12, 313-317. Geddes-Klein, D.M., Schiffman, K.B. and Meaney, D.F. (2006). Mechanisms and consequences of neuronal stretch injury in vitro differ with the model of trauma. J. Neurotrauma 23, 193-204. Gomez-Ramos, A., Dominguez, J., Zafra, D., Corominola, H., Gomis, R., Guinovart, J.J. and Avila, J. (2006). Sodium tungstate decreases the phosphorylation of tau through GSK3 inactivation. J. Neurosci. Res. 83, 264-273. Gong, C.X., Wegiel, J., Lidsky, T., Zuck, L., Avila, J., Wisniewski, H.M., Grundke-Iqbal, I. and Iqbal, K. (2000). Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and -2B in rat brain. Brain Res. 853, 299-309. Goto, S., Yamamoto, H., Fukunaga, K., Iwasa, T., Matsukado, Y. and Miyamoto, E. (1985). Dephosphorylation of microtubule-associated protein 2, tau factor, and tubulin by calcineurin. J. Neurochem. 45, 276-283. Gotz, J. and Nitsch, R.M. (2001). Compartmentalized tau hyperphosphorylation and increased levels of kinases in transgenic mice. Neuroreport 12, 2007-2016. Guo, Z., Cupples, L.A., Kurz, A., Auerbach, S.H., Volicer, L., Chui, H., Green, R.C., Sadovnick, A.D., Duara, R., DeCarli, C., Johnson, K., Go, R.C., Growdon, J.H., Haines, J.L., Kukull, W.A. and Farrer, L.A. (2000). Head injury and the risk of AD in the MIRAGE study. Neurology 54, 1316-1323. Hernandez, F. and Avila, J. (2007). Tauopathies. Cell. Mol. Life Sci. 64, 2219-2233. Hughes, K., Nikolakaki, E., Plyte, S.E., Totty, N.F. and Woodgett, J.R. (1993). Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J. 12, 803-808. Imahori, K. and Uchida, T. (1997). Physiology and pathology of tau protein kinases in relation to Alzheimer's disease. J Biochem 121, 179-188. Iqbal, K., del, C.A.A. and Grundke-Iqbal, I. (2008). Cytosolic abnormally hyperphosphorylated tau but not paired helical filaments sequester normal MAPs and inhibit microtubule assembly. J Alzheimers Dis 14, 365-370. Itoh, T.J., Hisanaga, S.i., Hosoi, T., Kishimoto, T. and Hotani, H. (1997). Phosphorylation States of Microtubule-Associated Protein 2 (MAP2) Determine the Regulatory Role of MAP2 in Microtubule Dynamics. Biochemistry (Mosc). 36, 12574-12582. Johnson, G.V. and Stoothoff, W.H. (2004). Tau phosphorylation in neuronal cell function and dysfunction. Journal of cell science 117, 5721-5729. Khatoon, S., Grundke-Iqbal, I. and Iqbal, K. (1994). Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett. 351, 80-84. Kirschner, M. and Mitchison, T. (1986). Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329-342. Korneyev, A., Binder, L. and Bernardis, J. (1995). Rapid reversible phosphorylation of rat brain tau proteins in response to cold water stress. Neurosci. Lett. 191, 19-22. Kundrotiene, J., Cebers, G., Wagner, A. and Liljequist, S. (2004). The NMDA NR2B subunit-selective receptor antagonist, CP-101,606, enhances the functional recovery the NMDA NR2B subunit-selective receptor and reduces brain damage after cortical compression-induced brain ischemia. J. Neurotrauma 21, 83-93. Kundrotiene, J., Wagner, A. and Liljequist, S. (2002). Extradural compression of sensorimotor cortex: a useful model for studies on ischemic brain damage and neuroprotection. J. Neurotrauma 19, 69-84. Kusakawa, G., Saito, T., Onuki, R., Ishiguro, K., Kishimoto, T. and Hisanaga, S. (2000). Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. J. Biol. Chem. 275, 17166-17172. Lee, G., Newman, S.T., Gard, D.L., Band, H. and Panchamoorthy, G. (1998). Tau interacts with src-family non-receptor tyrosine kinases. Journal of cell science 111 ( Pt 21), 3167-3177. Lewis, S.A., Wang, D.H. and Cowan, N.J. (1988). Microtubule-associated protein MAP2 shares a microtubule binding motif with tau protein. Science 242, 936-939. Lewthwaite, J.C., Bastow, E.R., Lamb, K.J., Blenis, J., Wheeler-Jones, C.P. and Pitsillides, A.A. (2006). A specific mechanomodulatory role for p38 MAPK in embryonic joint articular surface cell MEK-ERK pathway regulation. J. Biol. Chem. 281, 11011-11018. Lin, J.L., Huang, Y.H., Shen, Y.C., Huang, H.C. and Liu, P.H. (2010). Ascorbic acid prevents blood-brain barrier disruption and sensory deficit caused by sustained compression of primary somatosensory cortex. J. Cereb. Blood Flow Metab. Lindwall, G. and Cole, R.D. (1984). Phosphorylation affects the ability of tau protein to promote microtubule assembly. J. Biol. Chem. 259, 5301-5305. Liu, F., Grundke-Iqbal, I., Iqbal, K. and Gong, C.X. (2005). Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci. 22, 1942-1950. Liu, F., Liang, Z. and Gong, C.X. (2006). Hyperphosphorylation of tau and protein phosphatases in Alzheimer disease. Panminerva Med. 48, 97-108. Lusardi, T.A., Rangan, J., Sun, D., Smith, D.H. and Meaney, D.F. (2004). A device to study the initiation and propagation of calcium transients in cultured neurons after mechanical stretch. Ann. Biomed. Eng. 32, 1546-1558. Mandelkow, E. and Hoenger, A. (1999). Structures of kinesin and kinesin-microtubule interactions. Curr. Opin. Cell Biol. 11, 34-44. Mandelkow, E.M., Schweers, O., Drewes, G., Biernat, J., Gustke, N., Trinczek, B. and Mandelkow, E. (1996). Structure, microtubule interactions, and phosphorylation of tau protein. Ann. N. Y. Acad. Sci. 777, 96-106. McAllister, J.P., 2nd, Maugans, T.A., Shah, M.V. and Truex, R.C., Jr. (1985). Neuronal effects of experimentally induced hydrocephalus in newborn rats. J Neurosurg 63, 776-783. Murai, H., Okazaki, M. and Kikuchi, A. (1996). Tyrosine dephosphorylation of glycogen synthase kinase-3 is involved in its extracellular signal-dependent inactivation. FEBS Lett. 392, 153-160. Papasozomenos, S.C. (1996). Heat shock induces rapid dephosphorylation of tau in both female and male rats followed by hyperphosphorylation only in female rats: implications for Alzheimer's disease. J. Neurochem. 66, 1140-1149. Planel, E., Miyasaka, T., Launey, T., Chui, D.H., Tanemura, K., Sato, S., Murayama, O., Ishiguro, K., Tatebayashi, Y. and Takashima, A. (2004). Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer's disease. J. Neurosci. 24, 2401-2411. Plyte, S.E., Hughes, K., Nikolakaki, E., Pulverer, B.J. and Woodgett, J.R. (1992). Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim. Biophys. Acta 1114, 147-162. Qiang, L., Yu, W., Andreadis, A., Luo, M. and Baas, P.W. (2006). Tau protects microtubules in the axon from severing by katanin. J. Neurosci. 26, 3120-3129. Quinlan, E.M. and Halpain, S. (1996a). Emergence of activity-dependent, bidirectional control of microtubule-associated protein MAP2 phosphorylation during postnatal development. J. Neurosci. 16, 7627-7637. Quinlan, E.M. and Halpain, S. (1996b). Postsynaptic mechanisms for bidirectional control of MAP2 phosphorylation by glutamate receptors. Neuron 16, 357-368. Rauch, C. and Loughna, P.T. (2008). Stretch-induced activation of ERK in myocytes is p38 and calcineurin-dependent. Cell Biochem. Funct. 26, 866-869. Rendon, A., Jung, D. and Jancsik, V. (1990). Interaction of microtubules and microtubule-associated proteins (MAPs) with rat brain mitochondria. Biochem. J. 269, 555-556. Saatman, K.E., Duhaime, A.C., Bullock, R., Maas, A.I., Valadka, A. and Manley, G.T. (2008). Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 25, 719-738. Saatman, K.E., Graham, D.I. and McIntosh, T.K. (1998). The neuronal cytoskeleton is at risk after mild and moderate brain injury. J. Neurotrauma 15, 1047-1058. Sadoshima, J. and Izumo, S. (1997). The cellular and molecular response of cardiac myocytes to mechanical stress. Annu. Rev. Physiol. 59, 551-571. Sanchez, C., Diaz-Nido, J. and Avila, J. (2000). Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog. Neurobiol. 61, 133-168. Sanchez, C., Tompa, P., Szucs, K., Friedrich, P. and Avila, J. (1996). Phosphorylation and dephosphorylation in the proline-rich C-terminal domain of microtubule-associated protein 2. Eur. J. Biochem. 241, 765-771. Sengupta, A., Kabat, J., Novak, M., Wu, Q., Grundke-Iqbal, I. and Iqbal, K. (1998). Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch. Biochem. Biophys. 357, 299-309. Shafit-Zagardo, B., Kalcheva, N., Dickson, D., Davies, P. and Kress, Y. (1997). Distribution and subcellular localization of high-molecular-weight microtubule-associated protein-2 expressing exon 8 in brain and spinal cord. J. Neurochem. 68, 862-873. Sharma, N., Kress, Y. and Shafit-Zagardo, B. (1994). Antisense MAP-2 oligonucleotides induce changes in microtubule assembly and neuritic elongation in pre-existing neurites of rat cortical neurons. Cell Motil. Cytoskeleton 27, 234-247. Song, H.J. and Poo, M.M. (1999). Signal transduction underlying growth cone guidance by diffusible factors. Curr. Opin. Neurobiol. 9, 355-363. Spacek, J. (1987). Ultrastructural pathology of dendritic spines in epitumorous human cerebral cortex. Acta Neuropathol. (Berl). 73, 77-85. Sutherland, C. and Cohen, P. (1994). The alpha-isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p70 S6 kinase or MAP kinase-activated protein kinase-1 in vitro. FEBS Lett. 338, 37-42. Tashiro, K., Hasegawa, M., Ihara, Y. and Iwatsubo, T. (1997). Somatodendritic localization of phosphorylated tau in neonatal and adult rat cerebral cortex. Neuroreport 8, 2797-2801. Teng, J., Takei, Y., Harada, A., Nakata, T., Chen, J. and Hirokawa, N. (2001). Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol 155, 65-76. Toyota, S., Graf, R., Dohmen, C., Valentino, M., Grond, M., Wienhard, K. and Heiss, W.D. (2001). Elevation of extracellular glutamate in the final, ischemic stage of progressive epidural mass lesion in cats. J. Neurotrauma 18, 1349-1357. Tsai, L.H., Delalle, I., Caviness, V.S., Jr., Chae, T. and Harlow, E. (1994). p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371, 419-423. Vetter, P., Roth, A. and Hausser, M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. J. Neurophysiol. 85, 926-937. Vouyiouklis, D.A. and Brophy, P.J. (1995). Microtubule-associated proteins in developing oligodendrocytes: transient expression of a MAP2c isoform in oligodendrocyte precursors. J. Neurosci. Res. 42, 803-817. Wang, J.Z., Grundke-Iqbal, I. and Iqbal, K. (2007). Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur. J. Neurosci. 25, 59-68. Wang, J.Z. and Liu, F. (2008). Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog. Neurobiol. 85, 148-175. Yanagisawa, M., Planel, E., Ishiguro, K. and Fujita, S.C. (1999). Starvation induces tau hyperphosphorylation in mouse brain: implications for Alzheimer's disease. FEBS Lett. 461, 329-333. Yang, H., Chopp, M., Jiang, F., Zhang, X. and Schallert, T. (2006a). Interruption of functional recovery by the NMDA glutamate antagonist MK801 after compression of the sensorimotor cortex: implications for treatment of tumors or other mass-related brain injuries. Exp. Neurol. 200, 262-266. Yang, H., Preston, M., Chopp, M., Jiang, F., Zhang, X. and Schallert, T. (2006b). Mass-related traumatic tissue displacement and behavior: a screen for treatments that reduce [corrected] harm to bystander cells and recovery of function. J. Neurotrauma 23, 721-732. Yang, H., Zhang, X., Chopp, M., Jiang, F. and Schallert, T. (2006c). Local fluorouracil chemotherapy interferes with neural and behavioral recovery after brain tumor-like mass compression. Behav. Brain Res. 172, 80-89. Yu, W., Solowska, J.M., Qiang, L., Karabay, A., Baird, D. and Baas, P.W. (2005). Regulation of microtubule severing by katanin subunits during neuronal development. J. Neurosci. 25, 5573-5583. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48631 | - |
| dc.description.abstract | 臨床醫學上,大腦在許多的病理情況如: 腦瘤、腦血腫、頭部外傷、水腦症等會有受到擠壓及壓迫的情形,但先前鮮少有研究針對此做探討。鑒於此,我們採用”大鼠硬腦膜外壓迫”的動物模式來探討物理性壓迫對於大腦神經元塑性的影響。我們在大鼠硬腦膜外,植入半圓形輕量硬物,壓迫大鼠體感覺運動區域上方。我們發現,物理性壓迫會立即造成壓迫源下方,大腦皮質內錐狀細胞的樹突發生擠壓及扭曲。在形態上此扭曲變形的樹突,會在持續壓迫3天後回復到原先平直的狀態。受壓迫的錐狀細胞在重新塑形的過程中,伴隨有微管相關蛋白(microtubule-associated proteins)磷酸化的增加。微管相關蛋白磷酸化的增加會使得細胞骨架產生不穩定的狀況,進而使細胞增加塑性以重組細胞形態。我們發現在壓迫後,微管相關蛋白MAP2和tau的磷酸化,分別在壓迫30分鐘到1小時以及壓迫10分鐘到12小時都有增加的情況發生。利用免疫染色方法,亦證實了磷酸化增加的MAP2和tau在受壓迫的錐狀細胞細胞體和樹突內表現量都上升。伴隨著微管相關蛋白磷酸化的增加,我們同時發現在壓迫10分鐘到壓迫1天,去磷酸酶-PP2A的酵素活性會降低,但是去磷酸酶-PP2B的酵素活性則沒有太大改變。在蛋白激酶方面,物理性壓迫會使得蛋白激酶-Erk1/2和p38的活性短暫增加。蛋白激酶和去磷酸酶的活性變化的時程,都和受到壓迫的細胞,形態重新塑形的時程相吻合。本實驗指出,物理性壓迫會立即引起細胞內蛋白激酶和去磷酸酶的活性平衡發生改變,進而導致微管相關蛋白磷酸化程度上升,使得受壓迫的細胞樹突內細胞骨架不穩定,導致壓迫後細胞形態上的改變。綜合上述,大腦受到壓迫時,很快的神經細胞即開始變化,進而造成神經細胞形態乃至於功能上的改變,因此臨床上因病變或外傷而引起腦壓迫時,宜儘速進行解壓迫,以避免細胞型態改變的分子在迅速的被啟動後,造成無法回復的變化。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:05:34Z (GMT). No. of bitstreams: 1 ntu-99-F93446001-1.pdf: 3813070 bytes, checksum: 3e7a7eb32b597ea18949c9b22a84e01e (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目次
中文摘要 iii Abstract vi I. Introduction 1 The Rat Epidural Compression Model 2 Microtubules 6 Microtubule-associated proteins (MAPs) 7 Phosphorylation of MAPs 10 Kinases and phosphatases of MAPs 11 II. Materials and methods 12 Epidural compression of cerebral cortex 13 Lysate preparation for SDS PAGE 14 Immunoblotting and analysis 14 Immunohistochemistry 15 Phosphatase activity assay 16 Statistical analysis 17 III. Results 18 Compression distorted microtubules in apical dendritic trunks 18 Compression increased MAP2 phosphorylation 18 Compression induced tau phosphorylation 19 Compression differentially altered the activities of several kinases 20 Compression downregulated protein phosphatase 2A activity specifically 21 IV. Discussion 22 Effects of compression on MAPs 22 Effects of compression on protein kinases and phosphatases 25 The significance of this study in the context of traumatic brain injury 29 V. Reference 33 VI. Figures and Figure legends 47 | |
| dc.language.iso | en | |
| dc.subject | 壓迫 | zh_TW |
| dc.subject | 體內實驗 | zh_TW |
| dc.subject | 神經塑性 | zh_TW |
| dc.subject | 頭部外傷 | zh_TW |
| dc.subject | tau 蛋白 | zh_TW |
| dc.subject | in vivo studies | en |
| dc.subject | compression | en |
| dc.subject | tau | en |
| dc.subject | traumatic brain injury | en |
| dc.subject | neuroplasticity | en |
| dc.title | 探討壓迫引起大腦皮質神經元樹突快速重組的分子機制: 大鼠皮質硬腦膜外壓迫動物模式 | zh_TW |
| dc.title | The molecular events underlying the compression-induced rapid cortical neuronal dendritic remodeling: an investigation in a rat epidural cerebral compression model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳建榮(Jeng-Rung Chen),王慈娟(Tsyr-Jiuan Wang),王曰然(Yueh-Jan Wang),黃敏銓(Min-Chuan Huang) | |
| dc.subject.keyword | 體內實驗,神經塑性,頭部外傷,tau 蛋白,壓迫, | zh_TW |
| dc.subject.keyword | in vivo studies,neuroplasticity,traumatic brain injury,tau,compression, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-12-06 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨生物細胞學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
