Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48624
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許大山
dc.contributor.authorLung-Sheng Tsaien
dc.contributor.author蔡隆盛zh_TW
dc.date.accessioned2021-06-15T07:05:13Z-
dc.date.available2016-01-17
dc.date.copyright2011-01-17
dc.date.issued2010
dc.date.submitted2010-12-10
dc.identifier.citation[1] D. Gesbert, H. Bolcskei, D. Gore, and A. Paulraj, “Outdoor MIMO wireless channels: models and performance prediction,” IEEE Trans. Commun., vol. 50, pp. 1926–1934, Dec. 2002.
[2] W. Lee, “Effects on correlation between two mobile radio base-station antennas,” IEEE Trans. Veh. Tech., vol. 22, pp. 130–140, Nov. 1973.
[3] I. Sarris and A. Nix, “Design and performance assessment of high-capacity MIMO architectures in the presence of a line-of-sight component,” IEEE Trans. Veh. Tech., vol. 56, pp. 2194–2202, July 2007.
[4] F. Bohagen, P. Orten, and G. Oien, “Construction and capacity analysis of high rank line-of-sight MIMO channels,” in IEEE Wireless Communications and Networking Conference (WCNC), Mar. 2005.
[5] A. Wittneben and B. Rankov, “Impact of cooperative relays on the capacity of rank-deficient MIMO channels,” in Proc. 12th IST Summit on Mobile and Wireless Comm., Aveiro, Portugal, June 2003.
[6] M. Patwary, P. Rapajic, and I. Oppermann, “Capacity and coverage increase with repeaters in UMTS urban cellular mobile communication environment,” IEEE Trans. Commun., vol. 53, pp. 1620–1624, Oct. 2005.
[7] V. Sreng, H. Yanikomeroglu, and D. Falconer, “Coverage enhancement through two-hop relaying in cellular radio systems,” in IEEE Wireless Communications and Networking Conference (WCNC), Mar. 2002.
[8] M. Rahman and P. Ernstrom, “Repeaters for hot spot capacity in DS-CDMA networks,” IEEE Trans. Veh. Tech., vol. 53, pp. 626–633, May 2004.
[9] A. Paulraj and T. Kailath, “Increasing capacity in wireless broadcast systems using distributed transmission/directional reception (DTDR),” Sept. 6 1994. US Patent 5,345,599.
[10] W. Roh and A. Paulraj, “MIMO channel capacity for the distributed antenna systems,” Proceedings of VTC 2002-Fall.
[11] H. Bolcskei, R. Nabar, O. Oyman, and A. Paulraj, “Capacity scaling laws in MIMO relay networks,” IEEE Trans. Information Theory, vol. 5, pp. 1433–1444, June 2006.
[12] G. Etgen, Salas and Hille’s Calculus: One and Several Variables. John Wiley & Sons, 1995.
[13] J. Stewart, Calculus: Concepts and Contexts. Cole Publishing Company, 1998.
[14] A. Hatcher, Algebraic topology. Cambridge University Press, 2002.
[15] A. Forenza and R. Heath, “Impact of antenna geometry on MIMO communication in indoor clustered channels,” in IEEE Antennas and Propagation Society International
Symposium, vol. 2, pp. 1700–1703, 2004.
[16] A. Wittneben and B. Rankov, “Impact of cooperative relays on the capacity of rank-deficient MIMO channels,” in IST Summit, 2003.
[17] A. Wittneben and B. Rankov, “Distributed antenna systems and linear relaying for gigabit MIMO wireless,” in Vehicular Technology Conference, 2004. VTC2004-Fall.
[18] Y. Zhao, R. Adve, and T. Lim, “Improving amplify-and-forward relay networks: optimal power allocation versus selection,” IEEE Transactions on Wireless Communications,
vol. 6, pp. 3114–3123, Aug. 2007.
[19] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems for relay networks,” IEEE Transactions on Information Theory, vol. 51, pp. 3037–3063, Sep. 2005.
[20] P. Batlivala, R. Kommrusch, and R. Chapman, “Isolation method and apparatus for a same frequency repeater,” Oct. 2 1984. US Patent 4,475,243.
[21] C. Anderson, S. Krishnamoorthy, C. Ranson, T. Lemon, W. Newhall, T. Kummetz, and J. Reed, “Antenna Isolation, Wideband Multipath Propagation Measurements, and Interference Mitigation for On-frequency Repeaters,” Proceedings of Southeast-Con, pp. 110–114, 2004.
[22] W. Slingsby and J. McGeehan, “Antenna isolation measurements for on-frequency radio repeaters,” Antennas and Propagation, ICAP’95.
[23] D. Baum et al., “Final report on link level and system level channel models,” tech. rep., WINNER project deliverable D5.4, Nov. 2005.
[24] E. Telatar, “Capacity of multi-antenna Gaussian channel,” European Trans. Telecommun., vol. 10, pp. 585–595, Nov. 1999.
[25] D. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment,” Wireless personal communications, vol. 6, pp. 311–335, 1998.
[26] F. Farrokhi, G. Foschini, A. Lozano, and R. Valenzuela, “Link-optimal space-time processing with multiple transmit and receive antennas,” IEEE Commun. Letters,
vol. 5, pp. 85–87, Mar. 2001.
[27] J. Kermoal, L. Schumacher, K. Pedersen, P. Mogensen, and F. Frederiksen, “A stochastic MIMO radio channel model with experimental validation,” IEEE J. Selected Areas in Commun., vol. 20, pp. 1211–1226, Aug. 2002.
[28] W. Smythe, Static and Dynamic Electricity. Hemisphere Pub. Corp., 1989.
[29] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge University Press, 2005.
[30] D. Chizhik, J. Ling, P. Wolniansky, and R. Valenzuela, “Multiple-input-multiple-output measurements and modeling in Manhattan,” IEEE J. Selected Areas in Commun., vol. 21, pp. 321–331, Apr. 2003.
[31] A. James, “Distributions of matrix variates and latent roots derived from normal samples,” Annals of Mathematical Statistics, vol. 35, no. 1, pp. 475–501, 1964.
[32] R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press, 1990.
[33] G. Shen and L. Chen, “Estimation of singular values for product matrices,” Journal of Zhejiang Normal University (Natural Sciences), vol. 22, pp. 26–29, 1999.
[34] I. Gupta and A. Ksienski, “Effect of mutual coupling on the performance of adaptive arrays,” IEEE Transactions on Antennas and Propagation, vol. 31, pp. 785–791, Sep. 1983.
[35] J. Wallace and M. Jensen, “Mutual coupling in MIMO wireless systems: A rigorous network theory analysis,” IEEE Trans. Wireless Commun., vol. 3, pp. 1317–1325, July 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48624-
dc.description.abstract多輸入多輸出系統(MIMO)最多能夠提供隨「使用天線數目」線性增加的通道容量(channel capacity)增益。然而在直視環境(line-of-sight)此種缺乏散射的環境下沒有辦法有如此優秀的增益表現。文獻上曾提出利用人為製造的反射物,如中繼器(repeater)等,讓接收端能收到從四面八方入射的信號,可以讓直視環境下依然能有線性增加的通道容量增益。
在本文中,我們首先討論在固定佈建有限個中繼器之後,能享受到線性增加通道容量增益的涵蓋範圍。我們的分析結果指出在適當參數之下,在相當廣的區域範圍裡使用者皆能享受到MIMO系統所能提供的高線性通道容量增益。在文中我們以數學方程式表示能有增益的覆蓋區域範圍;此範圍會與基地台、中繼器位置、陣列天線距離、陣列天線轉向等有關。
由於通訊使用者具有移動的特性,線性通道容量增益倍率(capacity scaling factor)亦隨其位置與天線陣列轉向而變化。在本文中我們進一步討論天線陣列的幾何形狀及陣列轉向對線性通道容量增益倍率的影響。我們推導出在有兩個中繼器的環境下,若天線陣列的轉向不定,能夠有兩倍通道容量增益的機率為何,並發現不論在行動端的天線陣列幾何形狀為何,此機率在傳輸涵蓋範圍裡有固定形狀的幾何分佈。我們的結果指出,利用中繼器輔助,在很大的覆蓋範圍裡行動端都能有線性增加的通道容量增益。此外,當陣列天線的轉向不定時,此增益的有效機率可藉由使用非線性的天線陣列來提升。
zh_TW
dc.description.abstractMultiple-input multiple-output (MIMO) technique provides
capacity improvement which scales linearly with the number of antennas. However, such improvement cannot be realized in line-of-sight (LOS) environments due to lack of scattering. It had been proposed that, in LOS environments, if a mobile station can receive signal from multiple repeaters, the artificial multipath could render an equivalent high-rank end-to-end MIMO channel. In this dissertation, we first investigate whether fixed-location repeaters can induce significant MIMO capacity gain throughout the coverage of
a cell in a LOS environment. Our results indicate that, for a wide range of repeater locations and antenna parameters, the majority of the coverage area of a cell can support a high-order capacity scaling factor. We further show that for a capacity scaling factor of 2, the corresponding coverage consists of a small number of simply-connected areas. We present the expressions for the contour of these areas as a function of base station and repeater locations, antenna spacings, and antenna orientations. Next we investigate the effect of antenna geometry and orientation on the capacity scaling behavior. A MIMO system aided by two repeaters in a LOS environment is considered. For a particular MS location, the supporting MIMO gain can be quite different depending on the array orientation. Due to the mobile nature, the MS antenna array may not usually orient to a suitable direction to enable the MIMO gain. In light of this concern, we derive the formulation of the two-eigenmode availability, defined to be the probability of a mobile location enjoying two
useful spatial degrees of freedom given a random antenna orientation. Regardless of the antenna geometry, locations of the same eigenmode availability must constitute one or more horseshoe curves. Our result shows that the repeaters can provide MIMO gain with a high probability over a large
area.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T07:05:13Z (GMT). No. of bitstreams: 1
ntu-99-D93942018-1.pdf: 1073181 bytes, checksum: 30aad23370d429f460326c46fef3e950 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
Abstract i
Contents iii
List of Figures v
1 Introduction 1
2 Preliminaries 5
2.1 Review of communication systems with relays . . . . . . . . . . . . . . . 5
2.2 Notations for repeater-aided MIMO systems . . . . . . . . . . . . . . . . 6
2.3 The MIMO compound channel over doubly-LOS environment . . . . . . 8
2.4 Capacity, effective eigenmodes, and n-eigenmode coverage . . . . . . . . . 11
2.5 Irrelevance of multiple repeater-antennas over LOS channels . . . . . . . 14
2.6 A motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 2-eigenmode coverage of nT − {1, 1}K − nR systems 19
3.1 Necessary and sufficient conditions for a location in 2-eigenmode coverage 20
3.2 Expression of the 2-eigenmode coverage area . . . . . . . . . . . . . . . . 22
3.3 Geographical properties of the 2-eigenmode coverage area . . . . . . . . . 28
3.4 More on the contiguous shape of the n-eigenmode coverage . . . . . . . . 30
3.5 The 2-eigenmode coverage area for orientation-optimized MS . . . . . . . 31
3.6 Comparison with i.i.d. Rayleigh fading MIMO channels . . . . . . . . . . 33
3.7 2-eigenmode coverage for nT − {1, 1}^K − nR configurations with K >2 . 35
4 High-order eigenmode coverage for scenarios with symmetric repeater
placement 39
5 Bounds on the strength of eigenmodes 43
6 Effects of Array Geometry and Orientation on 2-eigenmode Coverage 45
6.1 Parameters specifying array geometry . . . . . . . . . . . . . . . . . . . . 46
6.1.1 The MIMO compound channel over a doubly-LOS environment . 47
6.1.2 Necessary and sufficient conditions for two effective eigenmodes . 48
6.2 2-eigenmode availability and its properties . . . . . . . . . . . . . . . . . 48
6.3 Effect of array geometry on the 2-eigenmode availability . . . . . . . . . 50
6.3.1 Linear Dependence between spatial signatures . . . . . . . . . . . 50
6.3.2 Expression of the 2-eigenmode availability for MS using ULA . . . 52
6.3.3 Effect of array orientation on 2-eigenmode availability when using
UCA or star-array . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3.4 2-eigenmode availability evaluation . . . . . . . . . . . . . . . . . 55
7 Conclusion and future work 63
Appendix Connectedness of 2-eigenmode coverage 65
A.1 Proof for Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
dc.language.isoen
dc.subject陣列天線zh_TW
dc.subject多輸入多輸出zh_TW
dc.subject通道增益zh_TW
dc.subject直視環境zh_TW
dc.subject中繼器zh_TW
dc.subjectorientationen
dc.subjectMIMOen
dc.subjectrelayen
dc.subjectrepeateren
dc.subjectLOSen
dc.subjectcapacity scalingen
dc.subjectmultiplexingen
dc.subjectcoverageen
dc.subjectgeometryen
dc.title中繼器支援之多輸入多輸出系統在直視環境下的通道容量增益及覆蓋範圍分析zh_TW
dc.titleCapacity scaling and Coverage of Repeater-Aided MIMO Systems in Line-of-Sight Environmentsen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee蘇育德,林茂昭,李學智,鍾偉和
dc.subject.keyword中繼器,多輸入多輸出,通道增益,直視環境,陣列天線,zh_TW
dc.subject.keywordMIMO,relay,repeater,LOS,capacity scaling,multiplexing,coverage,geometry,orientation,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2010-12-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved