請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48586完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高照村 | |
| dc.contributor.author | Wan-Cing Su | en |
| dc.contributor.author | 蘇琬晴 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:03:20Z | - |
| dc.date.available | 2013-10-07 | |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-19 | |
| dc.identifier.citation | 1. Hokanson JE, Austin MA: Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. Journal of Cardiovascular Risk 1996, 3(2):213-219.
2. Jonkers IJ, Smelt AH, van der Laarse A: Hypertriglyceridemia: associated risks and effect of drug treatment. Am J Cardiovasc Drugs 2001, 1(6):455-466. 3. Heller DA, de Faire U, Pedersen NL, Dahlen G, McClearn GE: Genetic and Environmental Influences on Serum Lipid Levels in Twins. N Engl J Med 1993, 328(16):1150-1156. 4. Emi M, Wilson D, Iverius P, Wu L, Hata A, Hegele R, Williams R, Lalouel J: Missense mutation (Gly----Glu188) of human lipoprotein lipase imparting functional deficiency. J Biol Chem 1990, 265(10):5910-5916. 5. Jong MC, Hofker MH, Havekes LM: Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol 1999, 19(3):472-484. 6. Hahn PF: Abolishment of alimentary lipemia following injection of heparin. Science 1943, 98(2531):19-20. 7. Korn ED: Clearing factor, a heparin-activated lipoprotein lipase. I. Isolation and characterization of the enzyme from normal rat heart. J Biol Chem 1955, 215(1):1-14. 8. Krauss RM, Windmueller HG, Levy RI, Fredrickson DS: Selective measurement of two different triglyceride lipase activities in rat postheparin plasma. J Lipid Res 1973, 14(3):286-295. 9. Havel RJ, Gordon RS, Jr.: Idiopathic hyperlipemia: metabolic studies in an affected family. J Clin Invest 1960, 39:1777-1790. 10. Krauss RM, Windmueller HG, Levy RI, Fredrickson DS: Selective measurement of two different triglyceride lipase activities in rat postheparin plasma. J Lipid Res 1973, 14(3):286-295. 11. Breckenridge WC, Little JA, Steiner G, Chow A, Poapst M: Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med 1978, 298(23):1265-1273. 12. Sparkes RS, Zollman S, Klisak I, Kirchgessner TG, Komaromy MC, Mohandas T, Schotz MC, Lusis AJ: Human genes involved in lipolysis of plasma lipoproteins: mapping of loci for lipoprotein lipase to 8p22 and hepatic lipase to 15q21. Genomics 1987, 1(2):138-144. 13. Wion KL, Kirchgessner TG, Lusis AJ, Schotz MC, Lawn RM: Human lipoprotein lipase complementary DNA sequence. Science 1987, 235(4796):1638-1641. 14. Deeb SS, Peng RL: Structure of the human lipoprotein lipase gene. Biochemistry 1989, 28(10):4131-4135. 15. Wang CS, Hartsuck J, McConathy WJ: Structure and functional properties of lipoprotein lipase. Biochim Biophys Acta 1992, 1123(1):1-17. 16. Wong H, Davis RC, Thuren T, Goers JW, Nikazy J, Waite M, Schotz MC: Lipoprotein lipase domain function. J Biol Chem 1994, 269(14):10319-10323. 17. Braun JE, Severson DL: Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J 1992, 287 ( Pt 2):337-347. 18. Camps L, Reina M, Llobera M, Vilaro S, Olivecrona T: Lipoprotein lipase: cellular origin and functional distribution. Am J Physiol 1990, 258(4 Pt 1):C673-681. 19. Bengtsson G, Olivecrona T: Interaction of lipoprotein lipase with heparin-Sepharose. Evaluation of conditions for affinity binding. Biochem J 1977, 167(1):109-119. 20. Eckel RH: Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med 1989, 320(16):1060-1068. 21. Hussain MM, Kancha RK, Zhou Z, Luchoomun J, Zu H, Bakillah A: Chylomicron assembly and catabolism: role of apolipoproteins and receptors. Biochim Biophys Acta 1996, 1300(3):151-170. 22. Fielding PE FC: Dynamics of lipoprotein transport in the circulatory system. Biochemistry of lipids, lipoproteins and membranes 1991:427-459. 23. Nilsson-Ehle P, Garfinkel AS, Schotz MC: Lipolytic enzymes and plasma lipoprotein metabolism. Annu Rev Biochem 1980, 49:667-693. 24. Vannier C, Ailhaud G: Biosynthesis of lipoprotein lipase in cultured mouse adipocytes. II. Processing, subunit assembly, and intracellular transport. J Biol Chem 1989, 264(22):13206-13216. 25. Wang CS, McConathy WJ, Kloer HU, Alaupovic P: Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest 1985, 75(2):384-390. 26. Rensen PCN, van Berkel TJC: Apolipoprotein E Effectively Inhibits Lipoprotein Lipase-mediated Lipolysis of Chylomicron-like Triglyceride-rich Lipid Emulsions in Vitro and in Vivo. J Biol Chem 1996, 271(25):14791-14799. 27. Mead JR, Cryer A, Ramji DP: Lipoprotein lipase, a key role in atherosclerosis? Febs Lett 1999, 462(1-2):1-6. 28. Mead JR, Ramji DP: The pivotal role of lipoprotein lipase in atherosclerosis. Cardiovasc Res 2002, 55(2):261-269. 29. Goldberg IJ: Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 1996, 37(4):693-707. 30. Mamputu JC, Levesque L, Renier G: Proliferative effect of lipoprotein lipase on human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2000, 20(10):2212-2219. 31. Renier G, Skamene E, DeSanctis JB, Radzioch D: Induction of tumor necrosis factor alpha gene expression by lipoprotein lipase. J Lipid Res 1994, 35(2):271-278. 32. Esenabhalu VE, Cerimagic M, Malli R, Osibow K, Levak-Frank S, Frieden M, Sattler W, Kostner GM, Zechner R, Graier WF: Tissue-specific expression of human lipoprotein lipase in the vascular system affects vascular reactivity in transgenic mice. Br J Pharmacol 2002, 135(1):143-154. 33. Lucas M, Iverius PH, Strickland DK, Mazzone T: Lipoprotein lipase reduces secretion of apolipoprotein E from macrophages. J Biol Chem 1997, 272(20):13000-13005. 34. Iverius PH, Ostlund-Lindqvist AM: Lipoprotein lipase from bovine milk. Isolation procedure, chemical characterization, and molecular weight analysis. J Biol Chem 1976, 251(24):7791-7795. 35. Elbein AD: Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing. Faseb J 1991, 5(15):3055-3063. 36. Fuhrmann U, Bause E, Ploegh H: Inhibitors of oligosaccharide processing. Biochim Biophys Acta 1985, 825(2):95-110. 37. Rothman JE, Orci L: Movement of proteins through the Golgi stack: a molecular dissection of vesicular transport. Faseb J 1990, 4(5):1460-1468. 38. Busca R, Martinez M, Vilella E, Pognonec P, Deeb S, Auwerx J, Reina M, Vilaro S: The mutation Gly142-->Glu in human lipoprotein lipase produces a missorted protein that is diverted to lysosomes. J Biol Chem 1996, 271(4):2139-2146. 39. Willson TM, Brown PJ, Sternbach DD, Henke BR: The PPARs: from orphan receptors to drug discovery. J Med Chem 2000, 43(4):527-550. 40. Mangelsdorf DJ, Evans RM: The RXR heterodimers and orphan receptors. Cell 1995, 83(6):841-850. 41. A IJ, Jeannin E, Wahli W, Desvergne B: Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J Biol Chem 1997, 272(32):20108-20117. 42. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W: Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 1996, 137(1):354-366. 43. Desvergne B, Wahli W: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999, 20(5):649-688. 44. Basu-Modak S, Braissant O, Escher P, Desvergne B, Honegger P, Wahli W: Peroxisome proliferator-activated receptor beta regulates acyl-CoA synthetase 2 in reaggregated rat brain cell cultures. J Biol Chem 1999, 274(50):35881-35888. 45. Hansen JB, Zhang H, Rasmussen TH, Petersen RK, Flindt EN, Kristiansen K: Peroxisome proliferator-activated receptor delta (PPARdelta )-mediated regulation of preadipocyte proliferation and gene expression is dependent on cAMP signaling. J Biol Chem 2001, 276(5):3175-3182. 46. Jehl-Pietri C, Bastie C, Gillot I, Luquet S, Grimaldi PA: Peroxisome-proliferator-activated receptor delta mediates the effects of long-chain fatty acids on post-confluent cell proliferation. Biochem J 2000, 350 Pt 1:93-98. 47. Schoonjans K, Staels B, Auwerx J: Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 1996, 37(5):907-925. 48. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J: PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. Embo J 1996, 15(19):5336-5348. 49. Langlois S, Deeb S, Brunzell JD, Kastelein JJ, Hayden MR: A major insertion accounts for a significant proportion of mutations underlying human lipoprotein lipase deficiency. Proc Natl Acad Sci U S A 1989, 86(3):948-952. 50. Murthy V, Julien P, Gagne C: Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol Ther 1996, 70(2):101-135. 51. Nickerson DA, Taylor SL, Weiss KM, Clark AG, Hutchinson RG, Stengard J, Salomaa V, Vartiainen E, Boerwinkle E, Sing CF: DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet 1998, 19(3):233-240. 52. Harlan WR, Jr., Winesett PS, Wasserman AJ: Tissue lipoprotein lipase in normal individuals and in individuals with exogenous hypertriglyceridemia and the relationship of this enzyme to assimilation of fat. J Clin Invest 1967, 46(2):239-247. 53. Fruchart JC, Brewer HB, Jr., Leitersdorf E: Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease. Fibrate Consensus Group. Am J Cardiol 1998, 81(7):912-917. 54. Zimetbaum P, Frishman WH, Kahn S: Effects of gemfibrozil and other fibric acid derivatives on blood lipids and lipoproteins. J Clin Pharmacol 1991, 31(1):25-37. 55. Rayalam S, Yang JY, Ambati S, Della-Fera MA, Baile CA: Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother Res 2008, 22(10):1367-1371. 56. Tan L, Yu J-T, Guan H-S: Resveratrol exerts pharmacological preconditioning by activating PGC-1[alpha]. Med Hypotheses 2008, 71(5):664-667. 57. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K et al: Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444(7117):337-342. 58. Jiang WJ: Sirtuins: novel targets for metabolic disease in drug development. Biochem Biophys Res Commun 2008, 373(3):341-344. 59. Ramadori G, Gautron L, Fujikawa T, Vianna CR, Elmquist JK, Coppari R: Central administration of resveratrol improves diet-induced diabetes. Endocrinology 2009, 150(12):5326-5333. 60. Mulvihill EE, Assini JM, Sutherland BG, DiMattia AS, Khami M, Koppes JB, Sawyez CG, Whitman SC, Huff MW: Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol 2010, 30(4):742-748. 61. Cho KW, Kim YO, Andrade JE, Burgess JR, Kim Y-C: Dietary naringenin increases hepatic peroxisome proliferators–activated receptor α protein expression and decreases plasma triglyceride and adiposity in rats. Eur J Nutr 2010, 50(2):81-88. 62. Goldwasser J, Cohen PY, Yang E, Balaguer P, Yarmush ML, Nahmias Y: Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit flavonoid naringenin: role of PPARalpha, PPARgamma and LXRalpha. PLoS One 2010, 5(8):e12399. 63. Bang KH, Kim YK, Min BS, Na MK, Rhee YH, Lee JP, Bae KH: Antifungal activity of magnolol and honokiol. Arch Pharm Res 2000, 23(1):46-49. 64. Ho KY, Tsai CC, Chen CP, Huang JS, Lin CC: Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis. Phytother Res 2001, 15(2):139-141. 65. Lo YC, Teng CM, Chen CF, Chen CC, Hong CY: Magnolol and honokiol isolated from Magnolia officinalis protect rat heart mitochondria against lipid peroxidation. Biochem Pharmacol 1994, 47(3):549-553. 66. Sohn EJ, Kim C-S, Kim YS, Jung DH, Jang DS, Lee YM, Kim JS: Effects of magnolol (5,5'-diallyl-2,2'-dihydroxybiphenyl) on diabetic nephropathy in type 2 diabetic Goto-Kakizaki rats. Life Sci 2007, 80(5):468-475. 67. Choi S-S, Cha B-Y, Lee Y-S, Yonezawa T, Teruya T, Nagai K, Woo J-T: Magnolol enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. Life Sci 2009, 84(25-26):908-914. 68. Tietz textbook of clinical chemistry. 1999, Third edition:850-851. 69. Fruchart-Najib J, Bauge E, Niculescu LS, Pham T, Thomas B, Rommens C, Majd Z, Brewer B, Pennacchio LA, Fruchart JC: Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5. Biochem Biophys Res Commun 2004, 319(2):397-404. 70. Kirchgessner TG, Chuat JC, Heinzmann C, Etienne J, Guilhot S, Svenson K, Ameis D, Pilon C, d'Auriol L, Andalibi A et al: Organization of the human lipoprotein lipase gene and evolution of the lipase gene family. Proc Natl Acad Sci U S A 1989, 86(24):9647-9651. 71. Faustinella F, Chang A, Van Biervliet JP, Rosseneu M, Vinaimont N, Smith LC, Chen SH, Chan L: Catalytic triad residue mutation (Asp156----Gly) causing familial lipoprotein lipase deficiency. Co-inheritance with a nonsense mutation (Ser447----Ter) in a Turkish family. J Biol Chem 1991, 266(22):14418-14424. 72. Emmerich J, Beg OU, Peterson J, Previato L, Brunzell JD, Brewer HB, Jr., Santamarina-Fojo S: Human lipoprotein lipase. Analysis of the catalytic triad by site-directed mutagenesis of Ser-132, Asp-156, and His-241. J Biol Chem 1992, 267(6):4161-4165. 73. Faustinella F, Smith LC, Chan L: Functional topology of a surface loop shielding the catalytic center in lipoprotein lipase. Biochemistry 1992, 31(32):7219-7223. 74. van Tilbeurgh H, Roussel A, Lalouel JM, Cambillau C: Lipoprotein lipase. Molecular model based on the pancreatic lipase x-ray structure: consequences for heparin binding and catalysis. J Biol Chem 1994, 269(6):4626-4633. 75. Winkler FK, D'Arcy A, Hunziker W: Structure of human pancreatic lipase. Nature 1990, 343(6260):771-774. 76. Hide WA, Chan L, Li WH: Structure and evolution of the lipase superfamily. J Lipid Res 1992, 33(2):167-178. 77. Dugi KA, Dichek HL, Talley GD, Brewer HB, Jr., Santamarina-Fojo S: Human lipoprotein lipase: the loop covering the catalytic site is essential for interaction with lipid substrates. J Biol Chem 1992, 267(35):25086-25091. 78. Tashiro J, Kobayashi J, Shirai K, Saito Y, Nakamura H, Morimoto Y, Yoshida S: Trypsin treatment may impair the interfacial activation action of lipoprotein lipase. J Biochem (Tokyo) 1992, 111(4):509-514. 79. Henderson HE, Ma Y, Liu MS, Clark-Lewis I, Maeder DL, Kastelein JJ, Brunzell JD, Hayden MR: Structure-function relationships of lipoprotein lipase: mutation analysis and mutagenesis of the loop region. J Lipid Res 1993, 34(9):1593-1602. 80. Yang CY, Gu ZW, Yang HX, Rohde MF, Gotto AM, Jr., Pownall HJ: Structure of bovine milk lipoprotein lipase. J Biol Chem 1989, 264(28):16822-16827. 81. Davis RC, Wong H, Nikazy J, Wang K, Han Q, Schotz MC: Chimeras of hepatic lipase and lipoprotein lipase. Domain localization of enzyme-specific properties. J Biol Chem 1992, 267(30):21499-21504. 82. Dichek HL, Parrott C, Ronan R, Brunzell JD, Brewer HB, Jr., Santamarina-Fojo S: Functional characterization of a chimeric lipase genetically engineered from human lipoprotein lipase and human hepatic lipase. J Lipid Res 1993, 34(8):1393-1340. 83. Berryman DE, Bensadoun A: Site-directed mutagenesis of a putative heparin binding domain of avian lipoprotein lipase. J Biol Chem 1993, 268(5):3272-3276. 84. Hata A, Ridinger DN, Sutherland S, Emi M, Shuhua Z, Myers RL, Ren K, Cheng T, Inoue I, Wilson DE et al: Binding of lipoprotein lipase to heparin. Identification of five critical residues in two distinct segments of the amino-terminal domain. J Biol Chem 1993, 268(12):8447-8457. 85. Ma Y, Henderson HE, Liu MS, Zhang H, Forsythe IJ, Clarke-Lewis I, Hayden MR, Brunzell JD: Mutagenesis in four candidate heparin binding regions (residues 279-282, 291-304, 390-393, and 439-448) and identification of residues affecting heparin binding of human lipoprotein lipase. J Lipid Res 1994, 35(11):2049-2059. 86. Semenkovich CF, Luo CC, Nakanishi MK, Chen SH, Smith LC, Chan L: In vitro expression and site-specific mutagenesis of the cloned human lipoprotein lipase gene. Potential N-linked glycosylation site asparagine 43 is important for both enzyme activity and secretion. J Biol Chem 1990, 265(10):5429-5433. 87. Ben-Zeev O, Stahnke G, Liu G, Davis RC, Doolittle MH: Lipoprotein lipase and hepatic lipase: the role of asparagine-linked glycosylation in the expression of a functional enzyme. J Lipid Res 1994, 35(9):1511-1523. 88. Busca R, Pujana MA, Pognonec P, Auwerx J, Deeb SS, Reina M, Vilaro S: Absence of N-glycosylation at asparagine 43 in human lipoprotein lipase induces its accumulation in the rough endoplasmic reticulum and alters this cellular compartment. J Lipid Res 1995, 36(5):939-951. 89. Wong H, Davis RC, Nikazy J, Seebart KE, Schotz MC: Domain exchange: characterization of a chimeric lipase of hepatic lipase and lipoprotein lipase. Proc Natl Acad Sci U S A 1991, 88(24):11290-11294. 90. Lookene A, Bengtsson-Olivecrona G: Chymotryptic cleavage of lipoprotein lipase. Identification of cleavage sites and functional studies of the truncated molecule. Eur J Biochem 1993, 213(1):185-194. 91. Williams KJ, Fless GM, Petrie KA, Snyder ML, Brocia RW, Swenson TL: Mechanisms by which lipoprotein lipase alters cellular metabolism of lipoprotein(a), low density lipoprotein, and nascent lipoproteins. Roles for low density lipoprotein receptors and heparan sulfate proteoglycans. J Biol Chem 1992, 267(19):13284-13292. 92. Al-Haideri M, Granot E, Schwiegelshoh B, Vogel T, Gorecki M, Goldberg IJ, Deckelbaum RJ: Apoprotein E simulates non receptor triglyceride-rich particle cellular uptake. Circulation 1993, 88:1-321. 93. Nykjaer A, Bengtsson-Olivecrona G, Lookene A, Moestrup SK, Petersen CM, Weber W, Beisiegel U, Gliemann J: The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds lipoprotein lipase and beta-migrating very low density lipoprotein associated with the lipase. J Biol Chem 1993, 268(20):15048-15055. 94. Zhang H, Krapp A, Ma Y, Ginzinger D, Beisiegel U, Hayden MR: In vitro mutagenesis studies defining residues of lipoprotein lipase critical for mediation of the binding of lipoproteins to the LDL receptor-related protein (LRP). Atherosclerosis 1994, 109(1-2):66. 95. Bruin T, Appelman EE, Blanchard H, Groat NR, Knstelein JJP, Derewenda ZS: The role of proline residues in the structure and function of lipoprotein lipase. . Atherosclerosis (1994a), 109:63. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48586 | - |
| dc.description.abstract | 脂蛋白解脂酶(lipoprotein lipase, LPL)座落於人類第八條染色體上,全長大約30kb,由十個exon以及九個intron構成,LPL在身體許多組織中合成,如脂肪組織、骨骼肌、腦以及腎臟等等。LPL被製造後會分泌至附近的微血管,與細胞表面的heparan sulfate proteoglycans (HSPG)結合而附著在微血管壁上。LPL在脂質代謝方面佔有重要的角色,其主要的功能是水解乳糜微粒和極低密度脂蛋白中的三酸甘油酯,而形成游離型脂肪酸及甘油。游離型脂肪酸可燃燒作為能量使用,或者以脂肪形式貯存。當脂蛋白解脂酶基因發生變異時會造成高脂血症,導致脂質代謝失去平衡。
Peroxisome proliferator-activated receptors (PPAR) 是一種nuclear receptor,當被活化時會結合retinoid X receptor形成heterodimer,直接結合到DNA上一段特殊的序列,而調控基因的表現,而此段序列稱為peroxisome proliferators response element (PPRE),LPL的promoter序列中也具有PPRE。 近年研究指出白藜蘆醇(resveratrol)是最具增強sirtuin活性的物質,而SIRT 1可以調節哺乳動物體內葡萄糖、胰島素生成,以及脂肪代謝等,另外也有研究提出柚皮素(naringenin)可以降低primary rat hepatocytes生成三酸甘油酯,提高PPARα和PPARγ活性。此外亦有研究指出厚朴酚(magnolol)可以藉控制具有第二型糖尿病老鼠體內的血糖而抑制慢性腎病的形成。同時厚朴酚也是PPARγ的ligand,可提高脂肪細胞攝取葡萄糖。 本論文目的為探討resveratrol、naringenin和magnolol這三種天然化合物是否透過PPARs 刺激LPL的生成並增加其活性,進而提供臨床治療高脂血症用藥的方向。 實驗利用HEK293、Huh7、U937以及3T3-L1細胞測試不同濃度的resveratrol、naringenin和magnolol是否可提高LPL活性。由收集細胞培養液以及細胞溶解液,分析結果顯示這三種化合物皆可以提高細胞中內源性LPL的活性。利用Real-time PCR定量3T3-L1細胞中基因表現,發現resveratrol可以提高pparα、pparγ、lpl及sirt1基因表現,而naringenin可以提高pparγ基因表現,magnolol則是提高pparγ、lpl基因表現。 目前結果證明了resveratrol、naringenin和magnolol可以促進細胞中LPL的表現量增加,pparγ表現量也增加,以上結果是否為PPARs的作用還需要更多實驗證實。 | zh_TW |
| dc.description.abstract | Lipoprotein lipase ( LPL ) gene located at human chromosome 8. The human LPL gene comprises of 10 exons and 9 introns spanning approximately 30 kb. LPL is synthesized in many tissues, such as adipose tissue, skeletal muscle, brain and kidney,etc. The synthesized LPL is secreted to capillary upon binding with HSPG which is localized on cell surface. LPL plays an important role in plasma lipid metabolism. It catalyzes the hydrolysis of triglycerides from chylomicrons and very low density lipoprotein into glycerol, diacylglycerol and free fatty acids. Free fatty acids are supplied to tissues as sources of metabolic energy or stored as triglycerides after re-esterification. Defects in LPL gene can cause hyperlipoproteinemia and affect lipid homeostasis.
Peroxisome proliferator-activated receptors (PPAR) is a nuclear receptor,PPAR/RXR heterodimers bind to specific response elements (PPREs) present in the promoters of their target genes.The PPREs is present in the promoters of LPL genes. Recent research about Sirtuin family shows that SIR1 can regulate glucose synthesis and insulin and adipose metabolism, etc. Resveratrol , the most potent molecule that enhances SIRT1 activity. There are reports showing that naringenin could reduce triglyceride production in primary rat hepatocytes and it also regulates nuclear receptors PPARα and PPARγ activities. Moreover, magnolol has been reported to control blood glucose and prevent or retard development of diabetic nephropathy in type 2 diabetic rats and it also increases glucose uptake in 3T3-L1 adipocytes as a weak PPARγ ligand. In this research, we investigated whether resveratrol, naringenin and magnolol could enhance LPL synthesis and activity through PPARs pathway. HEK293, Huh7, U937 and 3T3-L1 cells were treated with resveratrol, naringenin and magnolol.The data shoewed that three compounds enhanced endogenous LPL expression. By observing other genes expressed in 3T3-L1 cells, we detected resveratrol cound enhance pparα, pparγ, lpl and sirt1gene expression, naringenin could enhance pparγ gene expression, and magnolol could enhance pparα, pparγ and lpl gene expression. This result indicated that hypolipidemic effects of those natural compounds could be by enhancing LPL expression.Moreover, those compounds also enhanced pparγ gene expression. However, we could not prove whether resveratrol, naringenin and magnolol could enhance LPL synthesis and activity through PPARs pathway so far. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:03:20Z (GMT). No. of bitstreams: 1 ntu-100-R98424027-1.pdf: 1506163 bytes, checksum: cf1558c4e51f682f03590ddfcbb55900 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 總目次
總目次…………………………………………………………………………Ⅰ 圖目次…………………………………………………………………………Ⅲ 表目次…………………………………………………………………………Ⅴ 附錄目次………………………………………………………………………Ⅴ 簡稱或縮寫表…………………………………………………………………Ⅵ 中文摘要………………………………………………………………………Ⅶ 英文摘要………………………………………………………………………Ⅸ 第一章 導論 第一節 前言…………………………………………………………1 第二節 高三酸甘油脂血症…………………………………………1 第三節 脂蛋白解脂酶的發現………………………………………2 第四節 脂蛋白解脂酶的基因構造…………………………………2 第五節 脂蛋白解脂酶的基本特性…………………………………3 第六節 脂蛋白解脂酶的分泌機轉…………………………………4 第七節 細胞內的訊息傳遞…………………………………………5 第八節 脂蛋白解脂酶的基因缺陷…………………………………6 第九節 脂蛋白解脂酶缺乏的臨床症狀……………………………7 第十節 高脂血症的治療……………………………………………7 第十一節 藥物特性……………………………………………………8 第十二節 研究動機……………………………………………………9 第二章 實驗材料與方法 第一節 儀器設備……………………………………………………11 第二節 試藥、試劑組與材料………………………………………12 第三節 實驗方法……………………………………………………15 第三章 實驗結果 第一節 溶劑對細胞毒性的測試……………………………………18 第二節 藥物對細胞毒性的測試……………………………………18 第三節 藥物對內源性脂蛋白解脂酶的活性影響…………………20 第四節 藥物對細胞內基因表現的影響……………………………23 第五節 藥物對細胞內脂蛋白解脂酶的路徑探討…………………25 第四章 討論……………………………………………………………… 27 附圖……………………………………………………………………………31 附表……………………………………………………………………………61 附錄……………………………………………………………………………66 參考文獻………………………………………………………………………73 圖目次 圖1:溶劑和化合物對HEK293細胞存活度的影響 31 圖2:溶劑和化合物對Huh7細胞存活度的影響 32 圖3:溶劑和化合物對U937細胞存活度的影響 33 圖4:溶劑和化合物對3T3-L1細胞存活度影響 34 圖5:以Resveratrol作用後在HEK293細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較 35 圖6:以Naringenin作用後在HEK293細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較 39 圖7:以Magnolol作用後在HEK293細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較 43 圖8:以Resveratrol作用後在Huh7細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較 36 圖9:以Naringenin作用後在Huh7細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較 40 圖10:以Magnolol作用後在Huh7細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較 40 圖11:以Resveratrol作用後在U937細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較 41 圖12:以Naringenin作用後在U937細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較 41 圖13:以Magnolol作用後在U937細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較 45 圖14:以Resveratrol作用後在3T3-L1細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較 38 圖15:以Naringenin作用後在3T3-L1細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較 42 圖16:以Magnolol作用後在3T3-L1細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較 46 圖17:以Resveratrol作用後觀察HEK293細胞中基因表現 47 圖18:以Resveratrol作用後在HEK293細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較(有PPARα、PPARγ抑制劑) 48 圖19:以Resveratrol作用後觀察3T3-L1細胞中基因表現 49 圖20:以Resveratrol作用後在3T3-L1細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較(有PPARγ抑制劑) 50 圖21:以Resveratrol作用後在3T3-L1細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較(有sirt1抑制劑) 51 圖22:以Naringenin作用後觀察HEK293細胞中基因表現 52 圖23:以Naringenin作用後在HEK293細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較(有PPARα、PPARγ抑制劑) 53 圖24:以Naringenin作用後觀察3T3-L1細胞中基因表現 54 圖25:以Naringenin作用後在3T3-L1細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較(有PPARγ抑制劑) 56 圖26:以Naringenin作用後在3T3-L1細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較(有PPARγ和sirt1抑制劑) 57 圖27:以Magnolol作用後觀察HEK293細胞中基因表現 58 圖28:以Marnolol作用後觀察3T3-L1細胞中基因表現 49 圖29:以Magnolol作用後在3T3-L1細胞溶解物以及細胞培養液中脂蛋白解脂酶活性的比較(有PPARγ抑制劑) 60 表一:實驗過程中所需之寡核酸引子列 …………………………………………………61 表二:人類脂蛋白解脂酶的組成 …………………………………………………………62 表三:人類脂蛋白解脂酶之功能與結構 …………………………………………………64 表四:實驗結果統整……………………………………………………………………… 65 附錄目次 附錄一:實驗流程………………………………………………………………………… 66 附錄二:世界衛生組織對高脂血症分類 …………………………………………………72 附錄三:降血脂藥物機轉 …………………………………………………………………72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 厚朴酚 | zh_TW |
| dc.subject | 脂蛋白解脂酶 | zh_TW |
| dc.subject | 高三酸甘油脂血症 | zh_TW |
| dc.subject | 白藜蘆醇 | zh_TW |
| dc.subject | 柚皮素 | zh_TW |
| dc.subject | Hyperlipoproteinemia | en |
| dc.subject | Lipoprotein lipase | en |
| dc.subject | Magnolol | en |
| dc.subject | Naringenin | en |
| dc.subject | Resveratrol | en |
| dc.title | 天然化合物對脂蛋白解脂梅表現之影響 | zh_TW |
| dc.title | Effects of compounds on Lipoprotein Lipase Expression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林淑華,江福田,林淑萍,謝絹珠 | |
| dc.subject.keyword | 脂蛋白解脂酶,高三酸甘油脂血症,白藜蘆醇,柚皮素,厚朴酚, | zh_TW |
| dc.subject.keyword | Lipoprotein lipase,Hyperlipoproteinemia,Resveratrol,Naringenin,Magnolol, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
