請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48581完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭安理(Ann-Lii Cheng),許輝吉(Hey-Chi Hsu) | |
| dc.contributor.author | Zhong-Zhe Lin | en |
| dc.contributor.author | 林宗哲 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:03:07Z | - |
| dc.date.available | 2011-03-03 | |
| dc.date.copyright | 2011-03-03 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2011-01-11 | |
| dc.identifier.citation | Aihara A, Tanaka S, Yasen M, et al. The selective Aurora B kinase inhibitor AZD1152 as a novel treatment for hepatocellular carcinoma. J Hepatol 2010;52(1):63-71.
Andrews PD. Aurora kinases: shining lights on the therapeutic horizon? Oncogene 2005;24(32):5005-15. Avila MA, Berasain C, Sangro B, Prieto J. New therapies for hepatocellular carcinoma. Oncogene 2006;25(27):3866-84. Befeler AS, Di Bisceglie AM. Hepatocellular carcinoma: diagnosis and treatment. Gastroenterology 2002;122:1609-19. Buvelot S, Tatsutani SY, Vermaak D, Biggins S. The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly. J Cell Biol 2003;160:329-39. Chan KT, Lung ML. Mutant p53 expression enhances drug resistance in a hepatocellular carcinoma cell line. Cancer Chemother Pharmacol 2004;53:519-26. Chang MH, Shau WY, Chen CJ, et al. Hepatitis B vaccination and hepatocellular carcinoma rates in boys and girls. JAMA. 2000;284(23):3040-2. Chen CJ, You SL, Lin LH, HsuWL, YangYW. Cancer epidemiology and control in Taiwan: a brief review. Jpn JClin Oncol 2002;32:S66-81. Chen KF, Yeh PY, Yeh KH, et al. Down-regulation of phospho-Akt is a major molecular determinant of bortezomib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res 2008;68(16):6698-707. Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009;10(1):25-34. Choi E, Rogers E, Ahmad S, et al. Hepatobiliary cancers, in Feig BW, Berger DH, Fuhrman GM (eds): The M. D. Anderson Surgical Oncology Handbook. Philadelphia, PA, Lippincott Williams & Wilkins, 2006. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984;22:27-55. Crosio C, Fimia GM, Loury R, Kimura M, Okano Y, Zhou H, et al. Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol Cell Biol 2002;22(3):874-85. Cunningham SC, Tsai S, Marques HP, et al. Management of early hepatocellular carcinoma in patients with well-compensated cirrhosis. Ann Surg Oncol 2009;16:1820-31. Dewar H, Tanaka K, Nasmyth K, et al. Tension between two kinetochores suffices for their biorientation on the mitotic spindle. Nature 2004;428:93-7. Ditchfield C, Johnson VL, Tighe A, et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 2003;161(2):267-80. Du J, Hannon GJ. Suppression of p160ROCK bypasses cell cycle arrest after aurora-A/STK15 depletion. Proc Natl Acad Sci US A 2004;101:8975-80. Ducat D, Zheng Y. Aurora kinases in spindle assembly and chromosome segregation. Exp Cell Res 2004;301(1):60-7. Dunbar SA and Jacobson JW. Quantitative, multiplexed detection of Salmonella and other pathogens by Luminex xMAP suspension array. Methods Mol Biol 2007 394:1-19. El-Serag HB. Hepatocellular carcinoma: an epidemiologic view. J Clin Gastroenterology 2002;35:S72-8. El-Serag HB, Davila JA, Petersen NJ, McGlynn KA. The continuing increase in the incidence of hepatocellular carcinoma in the United States: an update. Ann Intern Med 2003;139: 817-23. El-Serag HB, Rudolph KL. Hepatocellular Carcinoma: Epidemiology and Molecular Carcinogenesis. Gastroenterology 2007;132:2557-76. Endicott JA, Ling V. The biochemistry of P-glycoproteinmediated multidrug resistance. Annu Rev Biochem 1989;58:137-71. Fu J, Bian M, Jiang Q, Zhang C. Roles of aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 2007;5:1 -10. Gautschi O, Heighway J, Mack PC, et al. Aurora Kinases as Anticancer Drug Targets. Clin Cancer Res 2008;14(6):1639-48 Giet R, Uzbekov R, Cubizolles F, et al. The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-relatedprotein XlEg5. J Biol Chem 1999;274:15005-13. Girdler F, Gascoigne KE, Eyers PA, et al. Validating Aurora B as an anti-cancer drug target. J Cell Sci 2006;119(Pt 17): 3664-75. Gish RG, Porta C, Lazar L, et al. Phase III randomized controlled trial comparing the survival of patients with unresectable hepatocellular carcinoma treated with nolatrexed or doxorubicin. J Clin Oncol 2007;25:3069-75. Gizatullin F, Yao Y, Kung V, et al. The Aurora kinase inhibitor VX-680 induces endoreduplication and apoptosis preferentially in cells with compromised p53-dependent postmitotic checkpoint function. Cancer Res 2006;66(15): 7668-77. Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 2005;115:1503-21. Glover DM, Leibowitz MH, McLean DA, Parry H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 1995;81(1):95-105. Gyllensten UB and Erlich HA. Generation of single stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA DQA locus. Proc Natl Acad Sci USA. 1988;85:7652-6. Halm U, Etzrodt G, Schiefke I, et al. A phase II study of pegylated liposomal doxorubicin for treatment of advanced hepatocellular carcinoma. Ann Oncol 2000;11:113-4. Hamada M, Yakushijin Y, Ohtsuka M, et al. Aurora2/BTAK/STK15 is involved in cell cycle checkpoint and cell survival of aggressive non-Hodgkin's lymphoma. Br J Haematol 2003;121(3):439-47. Han H, Bearss DJ, Browne LW, et al. Identification of differentially expressed gene in pancreatic cancercells using cDNA microarray. Cancer Res 2002;62:2890-6. Harrington EA, Bebbington D, Moore J, et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 2004;10(3):262-7. HataT, FurukawaT, SunamuraM, et al. RNAinterference targeting aurora kinase A suppresses tumor growth and enhances the taxane chemosensitivity in humanpancreatic cancer cells. Cancer Res 2005;65:2899-905. Hauf S, Cole RW, Laterra S, et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 2003;161(2):281-94. Heckman JT, Devera MB, Marsh JW, et al. Bridging locoregional therapy for hepatocellular carcinoma prior to liver transplantation. Ann Surg Oncol 2008;15:3169-77. Hirota T,Kunitoku N, SasayamaT, et al.Aurora-Aand an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 2003;114:585-98. Honda R, Korner R, Nigg EA. Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis. Mol Biol Cell 2003;14:3325-41. Hosmer DW, Lemeshow S. Applied logistic regression. 2nd ed. New York (NY): John Wiley & Sons; 2000. Hosmer DW, Lemeshow S. Applied survival analysis: regression modeling of time to event data. New York (NY): John Wiley & Sons; 1999. Hsu C, Chen CN, Chen LT, et al. Low-dose thalidomide treatment for advanced hepatocellular carcinoma. Oncology 2003;65(3):242-9. Hsu C, Lin ZZ, Lee KD, et al. A phase II trial of thalidomide plus tegafur/uracil for patients with advanced/metastatic hepatocellular carcinoma (HCC):Final report. Annual Meeting of the American Society of Clinical Oncology, Orlando, Florida 2009. Hsu CH, Yang TS, Hsu C, et al. Bevacizumab in Combination With Capecitabine in Patients With Advanced or Metastatic Hepatocellular Carcinoma: Results From a Phase II Study in Asian Patients. Br J Cancer 2010;102(6):981-6. Hsu HC, Jeng YM, Mao TL, Chu JS, Lai PL, Peng SY. ß-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 2000;157(3):763-70. Hsu HC, Peng SY, Lai PL, Chu JS, Lee PH. Mutations of p53 gene in hepatocellular carcinoma (HCC) correlate with tumor progression and patient prognosis: a study of 138 patients with unifocal HCC. Int J Oncol 1994;4:1341-7. Hsu HC, Tseng HJ, Lai PL, Lee PH, Peng SY. Expression of p53 gene in 184unifocal hepatocellular carcinomas: association with tumor growth and invasiveness. Cancer Res 1993;53(19):4691-4. Hsu HC, Wu TT, Wu MZ, Sheu JC, Lee CS, Chen DS. Tumor invasiveness and prognosis in resected hepatocellular carcinoma. Clinical and pathogenetic implications. Cancer 1988;61(10):2095-9. Hsu JY, Sun ZW, Li X, et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 2000;102:279-91. Hu RH, Lee PH, Yu SC, et al. Surgical resection for recurrent hepatocellular carcinoma: prognosis and analysis of risk factors. Surgery 1996;120(1):23-9. Ikeda M, Okusaka T, Ueno H, Takezako Y, Morizane C. A phase II trial of continuous infusion of 5-fluorouracil, mitoxantrone, and cisplatin for metastatic hepatocellular carcinoma. Cancer 2005;103:756-62. Jeng YM, Peng SY, Lin CY, Hsu HC. Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res 2004;10(6):2065-71. Jackson JR, Patrick DR, Dar MM, Huang PS. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 2007;7:107-17. Jonas S, Bechstein WO, Steinmuller T, et al. Vascular invasion and histopathologic grading determine outcome after liver transplantation for hepatocellular carcinoma in cirrhosis. Hepatology 2001;33:1080-6. Kallio MJ, McCleland ML, Stukenberg PT, Gorbsky GJ. Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr Biol 2002;12:900-5. Kanda A, Kawai H, Suto S, et al. Aurora-B/AIM-1 kinase activity is involved in Ras-mediated cell transformation. Oncogene 2005;24(49):7266-72. Katayama H, Ota T, Jisaki F, et al. Mitotic kinase expression and colorectal cancer progression. J Natl Cancer Inst 1999;91(13):1160-2. Keen N and Taylor S. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 2004;4(12):927-36. Kim GJ, Cho SJ, Won NH, et al. Genomic imbalances in Korean hepatocellular carcinoma. Cancer Genet Cytogenet 2003;142:129-33. Kimura M, Matsuda Y, Yoshioka T, et al. Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J Biol Chem 1999;274(11):7334-40. Kikuchi LO, Pranagua-Vezozoo DC, Chagas AL, et al. Nodules less than 20 mm and vascular invasion are predictors of survival in small hepatocellular carcinoma. J Clin Gastroenterol 2009;43(2):191-5. Koch A, Denkhaus D, Albrecht S, Leuschner I, von Schwenitz D, Pietsch T. Childhood hepatoblastoma frequently carry a mutated degradation targeting box of the β-catenin gene. Cancer Res 1999;59:269-73. Lahad JP, Mills GB, Coombes KR. Stem cell-ness: a ‘magic marker’ for cancer. J Clin Invest 2005;115:1463-7. Lai EC, Choi TK, Cheng CH, et al. Doxorubicin for unresectable hepatocellular carcinoma. A prospective study on the addition of verapamil. Cancer 1990;66:1685-7. Lasagna N, Fantappie O, Solazzo M, et al. Hepatocyte growth factor and inducible nitric oxide synthase are involved in multidrug resistance-induced angiogenesis in hepatocellular carcinoma cell lines. Cancer Res 2006;66:2673-82. Laurent-Puig P, Legoix P, Bluteau O, et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 2001;120(7):1763-73. Lee EC, Frolov A, Li R, Ayala G, Greenberg NM. Targeting Aurora kinases for the treatment of prostate cancer. Cancer Res 2006;66(10):4996-5002. Lee J, Park JO, Kim WS, et al. Phase II study of doxorubicin and cisplatin in patients with metastatic hepatocellular carcinoma. Cancer Chemother Pharmacol 2004;54:385-90. Lee TK, Man K, Ho JW, et al. FTY720 induces apoptosis of human hepatoma cell lines through PI3-Kmediated Akt dephosphorylation. Carcinogenesis 2004; 25:2397-405. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1988;396:643-649. Leung TW, Patt YZ, Lau WY, et al. Complete pathological remission is possible with systemic combination chemotherapy for inoperable hepatocellular carcinoma. Clin Cancer Res 1999;5:1676-81. Lin ZZ, Hsu HC, Hsu CH, Yeh PY, Huang CY, Huang YF, et al. The Aurorakinase inhibitor VE-465 has anticancer effects in pre-clinical studies of human hepatocellular carcinoma. J Hepatol. 2009;50(3):518-27. Lin ZZ, Jeng YM, Hsu HC, Cheng AL. Validating Aurora B as a potential therapeutic target for human hepatocellular carcinoma. Mol Cancer Ther 2007; 6(12):3501S. Lin ZZ, Jeng YM, Hu FC, et al. Significance of Aurora B Overexpression In Hepatocellular Carcinoma. BMC Cancer 2010(a);10(1):461. Lin ZZ, Jeng YM, Hu FC, Pan HW, Tsao HW, Hsu HC, Cheng AL. Overexpression of Aurora B kinase is correlated with vascular invasion and metastasis of human hepatocellular carcinoma. Annual Meeting of the American Association of Cancer Research, Washington, D.C. 2010(b) (#3290) Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 2006;66(24):11851-8. Llovet JM, Bruix J, Gores GJ. Surgical resection versus transplantation for early hepatocellular carcinoma: Clues for the best strategy. Hepatology 2000;31:1019-21. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008(a);359(4):378-90. Llovet JM, Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol 2008(b),48:S20-37. Manfredi MG, Ecsedy JA, Meetze KA, et al. Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci USA 2007;104(10):4106-4111. MarumotoT, Honda S, HaraT, et al. Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. JBiol Chem 2003;278:51786-95. Marumoto T, Zhang D, Saya H. Aurora-A – a guardian of poles. Nat Rev Cancer 2005;5:42-50. Michaud GA, Salcius M, Zhou F, et al. Analyzing antibody specificity with whole proteome microarrays. Nat Biotechnol 2003;21(12): 1509-12. Monier K, Mouradian S, Sullivan KF. DNA methylation promotes aurora-B-driven phosphorylation of histone H3 in chromosomal subdomains. J Cell Sci 2007;120:101 -14. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63. Murata-Hori M, Wang YL. The kinase activity of aurora B is required for kinetochore-microtubule interactions during mitosis. Curr Biol 2002;12(11):894-99. Ng IO, Liu CL, Fan ST, et al. Expression of P-glycoprotein in hepatocellular carcinoma. A determinant of chemotherapy response. Am J Clin Pathol 2000;113:355-63. Nguyen HG, Chinnappan D, Urano T, Ravid K. Mechanism of Aurora-B degradation and its dependency on intact KEN and A-boxes: identification of an aneuploidy-promoting property. Mol Cell Biol 2005;25:4977-92. Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2001;2(1):21-32 Niketeghad F, Decker HJ, Caselmann WH, et al. Frequent genomic imbalances suggest commonly altered tumour genes in human hepatocarcinogenesis. Br J Cancer 2001;85: 697-704. Okada T, Sawada T, Osawa T, Adachi M, Kubota K. A novel anti-cancer substance, MK615, from Ume, a variety of Japanese apricot, inhibits growth of hepatocellular carcinoma cells by suppressing Aurora A kinase activity. Hepato-Gastroenterology 2007;54:1770-14. Okada Y, Tosaka A, Nimura Y, et al. Atypical multidrug resistance may be associated with catalytically active mutants of human DNA topoisomerase II alpha. Gene (Amst) 2001;272: 141-8. O’Reilly EM, Stuart KE, Sanz-Altamira PM, et al. A phase II study of irinotecan in patients with advanced hepatocellular carcinoma. Cancer 2001;91:101-5. Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutation and DNA polymorphisms using the polymerase chain reaction. Genomics 1989;5:874-9. Ota T, Suto S, Katayama H, et al. Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res 2002;62(18):5168-77. Ou DL, Shen YC, Liang JD, et al. Induction of Bim expression contributes to theantitumor synergy between sorafenib and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor CI-1040 in hepatocellular carcinoma. Clin Cancer Res 2009;15(18):5820-8. Ouchi M, Fujiuchi N, Sasai K, et al. BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition. J Biol Chem 2004;279(19):19643-8. Palmer DH, Hussain SA, Johnson PJ. Systemic therapies for hepatocellular carcinoma. Expert Opin Invest Drugs 2004;13:1555-68. Pan HW, OuYH, Peng SY, et al. Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer 2003;98:119-27. Pang RW, Poon RT. From molecular biology to targeted therapies for hepatocellular carcinoma: the future is now. Oncology 2007;72 Suppl 1:30-44. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics 2002. CA Cancer J Clin 2005, 55:74-108. Philip PA, Mahoney MR, Allmer C, et al. Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol 2005;23:6657-63. Poon RT, Ho JW, Tong CS, et al. Prognostic significance of serum vascular endothelial growth factor and endostatin in patients with hepatocellular carcinoma. Br J Surg 2004;91:1354-60. Predki PF, Mattoon D, Bangham R, et al. Protein microarrays: a new tool for profiling antibody cross-reactivity. Hum Antibodies 2005;14(1-2):7-15. Qi G, Ogawa I, Kudo Y, et al. Aurora-B overexpression and its correlation with cell proliferation and metastasis in oral cancer. Virchows Arch 2007;450:297-302. Roberts LR and Gores GJ. Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin Liver Dis 2005;25(2): 212-25. Rajagopalan H, Jallepalli PV, Rago C, et al. Inactivation of hCDC4 can cause chromosomal instability. Nature 2004;428:77-81. Rojanala S, Han H, Munoz RM, et al. The mitotic serine threonine kinase, Aurora-2, is a potential target for drug development in human pancreatic cancer. Mol Cancer Ther 2004;3(4):451-7. Rubin EH,Shapiro GI,Stein MN,et al. A phaseI clinical and pharmacokinetic (PK) trial of the aurora kinase (AK) inhibitor MK-0457 in cancer patients [abstr3009]. J Clin Oncol 2006;24 (June 20 Supplement). Ruchaud S, Carmena M, Earnshaw WC. Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 2007;8(10):798-812. Sakakura C, Hagiwara A, Yasuoka R, et al. Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Br J Cancer 2001;84(6):824-31. Satinover DL, Leach CA, Stukenberg PT, Brautigan DL. Activation of Aurora-A kinase by protein phosphatase inhibitor-2, a bifunctional signaling protein. Proc Natl Acad Sci U S A 2004;101(23):8625-30. Sausville EA. Aurora kinases dawn as cancer drug targets. Nat Med 2004;10:234-5. Sen S. Aneuploidy and cancer. Curr Opin Oncol 2000;12:82-8. Sen S, Zhou H, Zhang RD, et al. Amplification/overexpression of a mitotic kinase gene in human bladder cancer. J Natl Cancer Inst 2002;94:1320-9. Shah SA, Cleary SP, Tan JC, et al. An analysis of resection vs transplantation for early hepatocellular carcinoma: Defining the optimal therapy at a single institution. Ann Surg Oncol 2007;14:2608-14. Shen YC, Hu FC, Jeng YM, et al. Nuclear overexpression of mitotic regulatory proteins in biliary tract cancer: correlation with clinicopathologic features and patient survival. Cancer Epidemiol Biomarkers Prev 2009;18(2):417-23. Shimada K, Sano T, Sakamoto Y, et al. A long-term follow-up and management study of hepatocellular carcinoma patients surviving for 10 years or longer after curative hepatectomy. Cancer 2005;104(9):1939-47. Siegel AB, Cohen EI, Ocean A, et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol 2008;26(18):2992-8. Sistayanarain A, Tsuneyama K, Zheng H, et al. Expression of Aurora-B kinase and phosphorylated histone H3 in hepatocellular carcinoma. Anticancer Res 2006;26:3585-93. Smith SL, Bowers NL, Betticher DC, et al. Overexpression of aurora B kinase (AURKB) in primary non-small cell lung carcinoma is frequent, generally driven from one allele, and correlates with the level of genetic instability. Br J Cancer 2005;93(6):719-29. Soncini C, Carpinelli P, Gianellini, et al. PHA-680632, a novel Aurora kinase inhibitor with potent antitumoral activity. Clin Cancer Res 2006;12(13):4080-9. Sorrentino R, Libertini S, Pallante PL, et al. Aurora B overexpression associates with the thyroid carcinoma undiff erentiated phenotype and is required for thyroid carcinoma cell proliferation. J Clin Endocrinol Metab 2005;90:928-35. Sun C, Chan F, Briassouli P, Linardopoulos S. Aurora kinase inhibition downregulates NF-κB and sensitizes tumour cells to chemotherapeutic agents. Biochem Biophys Res Commun 2007;352:220-5. Takahashi K, Yamada H, Yanagida M. Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol Biol Cell 1994;5:1145-58. Takahashi T, Futamura M, Yoshimi N, et al. Centrosomal kinases, HsAIRK1 and HsAIRK3, are overexpressed in primary colorectal cancers. Jpn J Cancer Res 2000;91(10):1007-14. Tanaka S, Arii S, Yasen M, et al. Aurora kinase B is a predictive factor for the aggressive recurrence of hepatocellular carcinoma after curative hepatectomy. Br J Surg 2008;95(5):611-9. Tanaka S, Mogushi K, Yasen M, et al. Gene-expression phenotypes for vascular invasiveness of hepatocellular carcinomas. Surgery 2010;147(3):405-14. Tanaka T, Kimura M, Matsunaga K, et al. Centrosomal kinase AIK1 is overexpressed ininvasive ductal carcinoma of the breast. Cancer Res 1999;59: 2041-4. Tanaka TU, Rachidi N, Janke C, et al. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome biorientation by altering kinetochore-spindle pole connections.Cell 2002;108:317-29. Tanner MM, Grenman S, Koul A, et al: Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clin Cancer Res 2000; 6:1833-9. Tatsuka M, Katayama H, Ota T, et al. Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res 1998;58:4811-6. Taura K, Ikai I, Hatano E, et al. Influence ofcoexisting cirrhosis on outcomes after partial hepatic resection for hepatocellular carcinoma fulfilling the Milan criteria: An analysis of 293 patients. Surgery 2007;142:685-94. Teicher BA. Newer cytotoxic agents: attacking cancer broadly. Clin Cancer Res 2008;14(6):1410-7. Thomas MB, Jaffe D, Choti MM, et al. Hepatocellular carcinoma: consensus recommendations of the National Cancer Institute Clinical Trials Planning Meeting. J Clin Oncol 2010;28(25):3994-4005. Thomas MB, Zhu AX. Hepatocellular carcinoma: the need for progress. J Clin Oncol 2005;23(13):2892-9. Tien AC, Lin MH, Su LJ, et al. Identification of the substrates and interaction proteins of aurora kinases from a protein-protein interaction model. Mol Cell Proteomics 2004;3(1): 93-104. Tsang WP, Kwok TT. Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene 2007;26:4877-81. Tseng TC, Chen SH, Hsu YP, et al. Protein kinase profile of sperm and eggs: cloning and characterization of two novel testis-specific protein kinases (AIE1, AIE2) related to yeast and fly chromosome segregation regulators. DNA Cell Biol 1998;17:823-33. Vincent S, Marty L, Fort P. S26 ribosomal protein RNA: an invariant control for gene regulation experiments in eukaryotic cells and tissues. Nucleic Acids Res. 1993;21:1498. Wang H, Han H, Mousses S,Von Hoff DD. Targeting loss-of-functionmutations in tumor-suppressor genes as a strategy for development of cancer therapeutic agents. Semin Oncol 2006;33:513-20. Warner SL, Bearss DJ, Han H, Von Hoff DD. Targeting Aurora-2 Kinase in Cancer. Mol Cancer Ther 2003;2(6):589-95. Warner SL, Munoz RM, Stafford P, et al. Comparing Aurora A and Aurora B as molecular targets for growth inhibition of pancreatic cancer cells. Mol Cancer Ther 2006(a);5(10):2450-8. Warner SL, Gray PJ, Von Hoff DD. Tubulin-associated drug targets: Aurora kinases, Polo-like kinases, and others. Semin Oncol 2006(b);33(4):436-48. Watanuki A, Ohwada S, Fukusato T, et al. Prognostic signifi cance of DNA topoisomerase II alpha expression in human hepatocellular carcinoma. Anticancer Res 2002;22:1113-9. Wilkens L, Flemming P, Gebel M, et al. Induction of aneuploidy by increasingchromosomal instability during dedifferentiation of hepatocellular carcinoma. Proc Natl Acad Sci USA 2004;101(5):1309-14. Wu JC, Chen TY, Yu CT, et al. Identification of V23RalA-Ser194 as a critical mediator for Aurora-A-induced cellular motility and transformation by small pool expression screening. J Biol Chem 2005; 280(10): 9013-22. Yang H, Burke T, Dempsey J, et al. Mitotic requirement for aurora A kinase is bypassed in the absence of aurora B kinase. FEBS Lett 2005;579(16):3385-91. Yang H, He L, Kruk P, Nicosia SV, Cheng JQ. Aurora-A induces cell survival and chemoresistance by activation of Akt through a p53-dependent manner in ovarian cancer cells. Int J Cancer 2006;119:2304-12. Yang J, Ikezoe T, Nishioka C, et al. AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood 2007;110:2034-40. Yeh PY, Chuang SE, Yeh KH, et al, Involvement of nuclear transcription factor-kappa B in low-dose doxorubicin-induced drug resistance of cervical carcinoma cells. Biochem Pharmacol 2003;66(1): 25-33. Yeh PY, Yeh KH, Chuang SE, et al. Suppression of MEK/ERK signaling pathway enhances cisplatin-induced NF-kappaB activation by protein phosphatase 4-mediated NF-kappaB p65 Thr dephosphorylation. J Biol Chem 2004; 279(25): 26143-8. Yeo W, Mok TS, Zee B, et al. A randomized phase III study of doxorubicin versus cisplatin/interferon alpha-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J Natl Cancer Inst 2005;97: 1532-8. Yu CT, Hsu JM, Lee YC, et al. Phosphorylation and stabilization of HURP by Aurora-A: implication of HURP as a transforming target of Aurora-A. Mol Cell Biol 2005;25(14): 5789-800. Yuan RH, Jeng YM, Pan HW, et al. Overexpression of KIAA0101 predicts high stage, early tumor recurrence, and poor prognosis of hepatocellular carcinoma. Clin Cancer Res 2007;13(18):5368-76. Zavaglia C, De Carlis L, Alberti AB, et al. Predictors of long-term survival after liver transplantation for hepatocellular carcinoma. Am J Gastroenterol 2005;100:2708-16. Zhou H, Kuang J, Zhong L, et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 1998;20:189-93. Zhu AX. Systemic therapy of advanced hepatocellular carcinoma: how hopeful should we be? Oncologist 2006;11:790-800. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48581 | - |
| dc.description.abstract | 研究背景
肝細胞癌是全世界造成癌症死亡最主要的癌症之一。對於無法進行外科手 術、無法進行局部治療或是已轉移的肝癌患者,通常會選擇化學療法作為治療;然而,肝癌細胞卻幾乎對所有的化療藥物具有高度的抗藥性。最近肝癌的分子標靶治療已有若干進展。Sorafenib因為在兩個重要的第三期安慰劑控制的臨床試驗中證實其確實可以延長晚期肝癌患者的存活時間,因此成為晚期肝癌治療第一個取得官方適應症的突破性藥物。不過,sorafenib 在末期肝癌的抗腫瘤活性嚴格說來仍然非常有限,客觀腫瘤反應率僅僅只有2至3%。因此,發展嶄新的肝癌標靶治療藥物仍是迫切需要的。 在本論文中我們嚐試探討Aurora kinases,一種和細胞有絲分裂相關蛋白質激酶(mitotic kinase),作為肝癌分子治療標靶的可能性。非整倍體染色體(aneuploidy)與染色體重排(chromosome rearrangements)是許多人類癌症的重要基因特徵。在人類癌症的發生過程中(hepatocarcinogenesis),基因組失衡(genomic imbalances)是經常被發現的異常。有絲分裂激酶(mitotic kinases)因為是有絲分裂關卡checkpoint、有絲分裂中紡錘體功能(spindle function)、染色體與細胞質分離 (chromosome segregation and cytokinesis)的重要調控者,所以其異常表現可能是許多細胞癌化的重要原因。而Aurora 激酶是有絲分裂激酶家族最重要的一群成員,因為可能有致癌作用,加上Aurora 激酶發現具有成為癌症治療分子標靶的潛力,而成為最近癌症研究領域的一大焦點。 本研究的第一部分是 Aurora激酶小分子抑制劑在肝癌的前臨床研究。先前臺大醫院病理部鄭永銘副教授與許輝吉教授的研究,發現Aurora A激酶在肝癌組織有過度表現的現象,而且Aurora A激酶過度表現的肝癌的惡性度更高、腫瘤分期更晚期,表示Aurora A激酶在肝癌的發生與疾病進展扮演重要的角色。因此,我們認為Aurora激酶在肝癌的治療上可能有重要的臨床意義。首先,過度表現的Aurora A激酶和其他Aurora 激酶家族的成員,可能是肝癌患者重要的預後因子,也是潛在的分子治療的標靶。其次,在我們開始著手這一系列研究之初,我們就已經掌握若干國際性大藥廠已在發展針對Aurora激酶的小分子抑制劑藥物,有了治療學的武器,我們的研究成果就有較高的可能性轉變成臨床可行的療法來治療肝癌。近年來在若干國際性大藥廠的實驗室發展了許多Aurora 激酶的小分子抑制劑,這些小分子抑制劑在臨床前研究顯示出它們有優越的抗腫瘤的效果。雖然Aurora 激酶抑制劑的臨床研究已進入第二期臨床試驗,但是在肝癌治療方面的潛在應用仍缺乏相關研究。因此,我們決定對Aurora 激酶抑制劑在肝癌分子標靶治療的可能角色作進一步的探討。 第二部分是探索Aurora激酶過度表現在肝癌的臨床病理意義。目前在哺乳類動物中有三個較常見的Aurora kinases,即Aurora A、Aurora B、及Aurora C。Aurora A與Aurora B激酶在受質催化區域(catalytic domain)有高度的同源序列(sequence homology),且在許多人類的癌症上都有過度表現的情形。先前的研究顯示Aurora A與Aurora B激酶的表現量不管是過高或過低都會造成染色體數目不穩定,並進而造成基因組不穩定的現象。即使Aurora A與Aurora B序列相似,兩者在染色體基因座,細胞內的位置,功能與訊號受質皆有差異。 Aurora A kinases之基因座落在染色體20q13.2,而Aurora B kinases基因坐落在染色體17p13.1。 Aurora A kinase 蛋白位於中心體的紡錘體極,且在中心體成熟與紡錘體分裂扮演重要的角色。許多Aurora kinases的抗癌治療研究興趣剛開始都集中在Aurora A的部份,但近來許多研究也證明其他Aurora kinases抑制劑也可抑制腫瘤的活性,如Aurora B可利用基因的方法達到相似的作用。 因此,區別Aurora A與Aurora B在癌症中的角色與臨床上的差異性是目前急需研究的目標。本部分研究的目的是釐清在肝癌中Aurora B與Aurora A的表現在臨床病理的差異性,與其兩者與兩個基因穩定性及肝癌發生有關的分子因子-p53及β-catenin的突變之相關性。我們在本研究的的一部分發現Aurora A和Aurora B 激酶的抑制劑(pan-Aurora kinase inhibitor),VE - 465,在肝癌的細胞株與動物實驗中展現了具體的抗肝癌效果。然而,即使Aurora A與Aurora B序列相似,兩者在染色體基因座,細胞內的位置,功能與訊號受質皆有差異。本研究除了探討在肝癌組織Aurora B表現的意義和作用外,也將探討以抑制Aurora B 激酶為治療肝癌的策略是否有效可行。而抑制Aurora B 激酶的方法為使用一個對Aurora B 激酶抑制具有專一性的小分子藥物—AZD1152 (AstraZeneca Pharmaceuticals,Inc.;Macclesfield, UK)。本部分研究也設法分析Aurora 激酶的過度表現和肝癌細胞血管入侵(vascular invasion)和轉移之間的相關性,同時也研究以抑制Aurora 激酶為治療策略,在預防肝癌細胞的血管入侵和轉移的可能效果。 第三部分是Aurora激酶小分子抑制劑在肝癌的藥物合併治療。目前已有一些前臨床研究顯示以Aurora 激酶抑製劑為本的組合性藥物處方是有可能造成治療上的突破。 Aurora 激酶抑制劑和化療藥物及其他分子標靶藥物可能會強化彼此的抗腫瘤效應,但其分子機轉大部分仍有待探討。在第一部分的研究中,我們發現VE-465這種pan-Aurora kinase抑制劑具有在肝癌細胞抗腫瘤的效果。我們也發現VE-465會造成p-ERK的upregulation,推測這是一種肝癌細胞抵抗細胞凋亡的機轉。而sorafenib則是第一個被證實對提高晚期肝癌患者存活率有益的藥物。由於sorafenib是一種有效的Raf-MEK-ERK路徑抑制物,在肝癌治療中更是目前臨床上最重要的治療藥物,因此我們嘗試研究合併VE-465和sorafenib的效應,探討這兩種藥物在肝癌細胞中是否具有細胞毒殺協同作用。我們的假設是阻斷若干肝癌細胞抵抗VE-465導致細胞凋亡的機轉路徑,可能可以提高VE-465治療肝癌的療效。 研究方法 在第一部分 Aurora激酶小分子抑制劑在肝癌的前臨床研究中,我們嘗試尋找並研究具有臨床應用可能性的Aurora kinase抑制劑。我們與發展該類小分子抑制劑最快的兩家國際大藥廠(Merck & Co., Inc., Whitehouse Station, NJ, USA AstraZeneca Pharmaceuticals,Macclesfield, UK)聯繫並提出合作研究發展計畫,並順利取得重要且具有臨床發展性的研究藥物—Aurora kinase小分子抑制劑。在此部分研究裡,我們用肝癌細胞的活體內與活體外模型檢測一個嶄新pan-Aurora kinase小分子抑制劑,VE-465,是否有能力抑制Aurora kinase的表現並檢驗其可能的抗肝癌作用已及機轉。 在第二部分探索Aurora激酶過度表現在肝癌的臨床病理意義的研究中,我們選取160個手術切除的肝癌組織檢體,這些病例是於1987年1月至1997年12月所蒐集;病患皆在台大醫院接受完整的病理評估和定期追蹤。我們以反轉錄聚合酶鏈鎖反應 (reverse transcription-polymerase chain reaction,RT-PCR)來測量肝癌細胞以及非腫瘤肝臟組織樣本的Aurora A和Aurora B mRNA的表現。另外,本研究160個病人肝癌檢體中,分別有134個和150個肝癌檢體用來分析p53和β-catenin的基因突變。此分析的方法是藉由直接定序p53 exon 2至exon 11和β-catenin的exon 3。所有的160名病患都接受超過五年以上的追蹤或是追蹤至死亡;最後一次的追蹤日期是2008年11月,當時仍有37名病患存活。其中有149名病患 (93%) 被診斷為有早期腫瘤復發的情況。 2、Fisher's exact test和log-rank test用來作單變數分析;早期腫瘤復發(ETR)、腫瘤大小、腫瘤分期和惡性腫瘤程度等變數則利用複羅吉斯迴歸模型 (multiple logistic regression model) 做多變數分析。存活時間分析則利用多重Cox 比例風險模型 (multiple Cox’s proportional hazards models)進行。血管侵犯與遠端轉移部分的研究採用子題A (Aurora B 激酶過度表現在肝癌的意義)中相同的160個手術切除的肝癌組織檢體分析。有無血管侵犯的現象根據病理組織學檢查的結果判定。是否有肝外轉移則根據臨床追蹤判斷,轉移的發現與最終診斷則依賴影像工具、病理檢查或是升高的AFP。所有的160名病患持續追蹤至少5年以上或是死亡,其中有59名患者有肝外腫瘤轉移的情況。 在第三部分Aurora激酶小分子抑制劑在肝癌的藥物合併治療研究中,我們首先用MTT法評估在不同藥物處理下細胞的存活率,將肝癌細胞種在96-well培養皿中,隔夜培養後加入不同濃度的VE-465和sorafenib,再培養72小時後,加入MTT,再以OD540測量藥物對細胞的毒殺作用。細胞存活率的表示方法是將所測得的吸光值除以背景吸光值,再比較各個不同濃度之間的細胞存活數。每個獨立的細胞存活率測量都會重覆做3至6次。至於VE-465 和sorafenib的潛在的協同生長抑制作用則以Chou-Talalay median effect analysis來推估。藥物處理後的組合指數(combination indices, CI)則以CompuSyn 軟體 (CompuSyn, Inc., Paramus, NJ, USA)計算。組合指數CI值小於1代表VE-465加sorafenib有藥物協同作用(synergistic effect),組合指數CI值等於1代表加性效應(additive effect),組合指數CI值大於1則代表拮抗作用(antagonistic effect)。 結果 第一部分 Aurora激酶小分子抑制劑在肝癌的前臨床研究 為了確認VE-465對肝癌細胞存活的影響,我們投予不同濃度的VE-465處理Huh-7和HepG2肝癌細胞株,我們觀察到這兩株細胞株細胞的存活會受到VE-465抑制,而且這些肝癌細胞生長受抑制的程度是和藥物濃度呈現正相關的關係 (dose-dependent)。此外,肝癌細胞生長受抑制的程度也會受到藥物處理時間長短的影響。VE-465會引起Huh-7和HepG2組蛋白H3的去磷酸化,其去磷酸化的程度會受到VE-465濃度的影響。 VE-465可能會干擾肝癌細胞的有絲分裂。我們因此分析暴露在VE-465下的肝癌細胞在有絲分裂時期其紡錘體和染色體在形態上的變化。我們發現以1 μM VE-465處理的Huh-7會有大量不正常的細胞分裂前中期細胞,這些細胞都會有受VE-465影響而具有較不成熟中心體和紡錘體雙極性異常。在1 μM VE-465處理下的HepG2細胞株也觀察到類似的異常有絲分裂。VE-465對肝癌細胞在細胞週期上的影響會使Huh-7細胞在第24小時大量累積含有4N DNA的細胞,隨後的48小時和72小時則出現含有8N DNA的細胞。HepG2在第24小時,VE-465促使細胞產生含有4N 以上DNA的細胞,在第48和72小時則受到proficient postmitotic checkpoint的調控導致有8N DNA的細胞較少。在藥物引起細胞凋亡部分,VE-465引起Huh-7和HepG2細胞的凋亡程度會隨VE-465濃度增加而上升。細胞暴露在10 μM VE-465經過72小時後,造成46%的Huh-7細胞凋亡(處在sub-G1時期)、HepG2則有24% 的細胞凋亡。關於VE-465在活體內試驗對肝癌腫瘤生長抑制的影響,裸鼠接受一天兩次VE-465的腹腔注射,其劑量為15、25和35 mg/kg/天,裸鼠的平均腫瘤的大小和控制組做比較分別減少了59%、59%和77% (p < 0.005)。 第二部分 探索Aurora激酶過度表現在肝癌的臨床病理意義 在基因放大的指數期檢測160個經手術切除的單一性肝癌細胞檢體,其中有98個檢體 (61%) 有Aurora B mRNA過度表現的現象。肝癌患者若有Aurora B的過度表現情況會有較差的五年存活率 (P < 0.0001)及較常發生術後肝癌早期復發 (P < 0.0001)。在多變數分析結果中,ETR (術後肝癌早期復發)事件事影響病患存活時間最重要的危險因子。分析術後肝癌早期復發事件,則發現Aurora B的過度表現、腫瘤大於5cm、較晚期之腫瘤分期和年紀較輕的患者(55歲以下) 皆為造成病人術後肝癌早期復發統計上顯著的獨立危險因子。這部分的分析主要的發現是:Aurora B過度表現會造成較高比例的高度惡性腫瘤以及較多的肝癌早期復發事件。Aurora B的過度表現透過對ETR事件和腫瘤惡性度的影響,再導致接受根除性肝癌切除手術病患的存活狀況變差。 肝癌組織若同時過度表現Aurora A和Aurora B則會造成較多比例的患者有血清AFP升高 (≥200 ng/mL,71%)、較大型的腫瘤 (>5 cm,72%)、較高的腫瘤惡性度(第二至第四級)的腫瘤 (94%)、較晚期(第IIIA至IV期)的腫瘤 (82%)。此外,肝癌組織若同時過度表現Aurora A和Aurora B也會造成較多p53 基因變異 (64%)、較少β-catenin 基因變異(8%) 和四組病人中最差的五年存活率 (19%)。另外,我們發現無論肝癌組織是否有Aurora A過度表現、是否有p53或β-catenin基因變異存在,肝癌中的Aurora B過度表現均會導致較短的病人存活時間、較低的病患五年存活率。 我們進一步探討抑制Aurora B激酶對肝癌細胞生長活性的影響。我們發現AZD1152-HQPA具有濃度依賴性抑制肝癌細胞活性的能力。AZD1152 – HQPA的72小時50%細胞抑制存活率濃度(IC50)在Huh- 7和Hep3B細胞株分別為 16.72 ± 2.44 nM和4.79 ± 1.03 nM。AZD1152-HQPA抑制組蛋白H3在Ser10位置的磷酸化是具有濃度依賴性的。然而AZD1152-HQPA卻完全不會抑制Aurora A激酶在T288位置的磷酸化。AZD1152 – HQPA會誘導肝癌細胞的細胞週期紊亂、誘導肝癌細胞凋亡。 Aurora激酶的表現和肝癌血管侵襲有正相關性,單變數分析發現肝癌血管侵犯除與血清中AFP升高、腫瘤大於5cm、較高的腫瘤組織惡性度有關外,也與Aurora A的過度表現、及Aurora B的過度表現成正相關。Aurora激酶的表現和肝癌遠處轉移也具相關性;單變數分析檢驗發現肝癌遠處的腫瘤轉移與血清中AFP升高、腫瘤大於5cm、較高的腫瘤組織惡性度、較晚的腫瘤分期、以及Aurora A的過度表現、Aurora B的過度表現有關。以Cox比例風險模型 (Cox’s proportional hazards model) 來分析影響病患,發現有肝癌血管侵犯的獨立危險因子,包括腫瘤大於5cm (OR:3.893,P = 0.0005)、Aurora B的過度表現(OR:2.659,P = 0.0183)。而影響病患肝癌根除性手術後遠處轉移的獨立危險因子則有較晚期之腫瘤分期 (stage III-IV,OR:6.945,P < 0.0001)、及Aurora A的過度表現(OR:4.195,P = 0.0027)。 第三部分Aurora激酶小分子抑制劑在肝癌的藥物合併治療 將Huh-7細胞株以0.3 μM VE-465處理(Huh-7 對VE-465的72小時MTT IC50約為1-3μM),可以發現在24小時以後,ERK的磷酸化表現即加強,此一ERK路徑的活化現象可持續到至少48小時。同樣地,將HepG2細胞株以1 μM VE-465處理(HepG2 對VE-465的72小時MTT IC50約為3-5μM),可以發現其ERK的磷酸化表現亦在24小時以後加強,此ERK路徑的活化現象可持續到72小時。 關於VE-465 和sorafenib潛在的協同生長抑制作用的推估,我們發現在Huh-7(Huh-7 是對VE-465相對最敏感的細胞株,對VE-465的72小時MTT IC50約為1-3μM) 和PLC/RPF/5(PLC/RPF/5是對VE-465相對最不敏感的細胞株,對VE-465的72小時MTT IC50為>20μM) ,VE-465加sorafenib的組合指數CI值均小於1。亦即此合併藥物處方VE-465和sorafenib在對VE-465有效與沒有效的肝癌細胞株均呈現出明顯的抗癌細胞生長的協同效應。 結論 第一部分 Aurora激酶小分子抑制劑在肝癌的前臨床研究 台大病理學研究所鄭等先前的研究已指出在所有測試的8種肝癌細胞株和224例人類肝癌細胞組織中有137例 (61%) 會有Aurora A激酶的過度表現。Aurora A激酶的過度表現和更後期的肝癌(第三與第四期)、惡性程度較高的腫瘤與有著相統計上有意義的相關性。這些研究結果均顯示著Aurora 激酶有機會成為治療肝癌的分子標的。 在這項研究中,我們發現,VE-465,一種新型的Aurora kinase抑制劑,可能是一種很有發展潛力的肝療治療藥物。首先,在測試肝癌細胞存活率時我們發現,VE-465對於抑制腫瘤肝癌細胞存在著濃度和時間依賴性。VE-465於肝癌細胞株Huh-7及HepG2的IC50值均遠低於小鼠模型中血漿內可達到的VE-465濃度。此外,我們研究了VE-465對於Aurora訊息傳遞路徑的影響。我們發現,Huh - 7和HepG2肝癌細胞株中,組蛋白histone H3於Ser10的磷酸化在VE-465的處理下明顯下降。在動物實驗中,給予VE-465的也導致Aurora訊息傳遞路徑的抑制、腫瘤生長速度的下降、及細胞凋亡。根據上述的結果,我們推測Aurora 激酶可能有機會成為治療肝癌的標靶分子。 有一些研究顯示,Aurora A和Aurora B激酶是不同的標靶治療分子目標。然而也有研究顯示,Aurora激酶 A和B的共同抑制劑(pan-Aurora kinase inhibitor)與使用基因方式僅阻斷Aurora B激酶的細胞株表現型幾乎一致。在目前研究中,我們發現,VE - 465誘導的細胞週期變化類似於使用RNA干擾造成的Aurora B激酶功能喪失。然而,VE-465也能抑制中心體成熟和紡綞體兩極化,此現象又符合Auroa A激酶的功能不足。是否VE-465所額外造成的Aurora A激酶抑制能夠造成其療效的進步則仍待澄清。 綜合上述討論,我們證明了VE - 465治療在肝癌細胞造成顯著的Aurora 訊息傳遞路徑抑制,從而導致有缺陷的有絲分裂、細胞週期阻滯、細胞DNA複製但有絲分裂失敗的endoreduplication現象、細胞凋亡,並最終抑制癌細胞的生長。我們的研究結果表明,VE - 465和其他可能的小分子Aurora磷酸酶抑制劑可能能用於治療肝癌。進一步的臨床研究來驗證Aurora激酶抑制劑於肝癌患者的治療是必要的。 第二部分 探索Aurora激酶過度表現在肝癌的臨床病理意義 為了進一步說明Aurora B激酶在肝癌細胞癌化過程扮演的角色,並探索其與Aurora A激酶之間的相互作用,我們分析了160個經手術切除的單一性肝細胞癌Aurora A和Aurora B的mRNA,在這160例中其過度表現的現象別分佔了63%和61% 。重要的是,Aurora B激酶基因表達與臨床病理參數的單因素分析中,有多項密切相關,包括高AFP水平(P < 0.0001),腫瘤大小大於五公分(P = 0.021),較高的惡性組織病理分級(P = 0.0007),以及更高的腫瘤分期(P < 0.0001)。多變項分析中,我們發現,Aurora B激酶過度表達與較晚期的肝癌腫瘤分期(第IIIA,IIIB期和IV)有相關,而第III期和第IV期的腫瘤會表現出不同程度的血管侵犯和微觀肝內腫瘤蔓延(勝算比為7.439, P = 0.0003)。 這些結果顯示,過度表現的Aurora B激酶與肝癌的腫瘤侵犯性和肝內轉移性,有高度的統計相關性。 在本部分研究中,我們發現,Aurora B激酶的過度表現在肝癌代表了病人有較高機率發生腫瘤早期復發,這個腫瘤早期復發的機率相較於沒有Aurora B激酶過度表現的病人大於2倍(勝算比OR為8.71; 95% CI為4.02-18.91; P = 0.0001)。 Aurora B激酶的過度表現與較晚期腫瘤分期(第IIIA,IIIB期和第IV期)的肝癌有統計上的正相關,而肝癌患者具有Aurora B激酶的過度表現,五年存活率比沒有Aurora B激酶過度表現的患者明顯較差(勝算比OR為4.19; 95% CI為2.11-8.36; P = 0.0001)。藉著多變項分析可證實,Aurora B激酶是一個腫瘤早期復發的獨立危險因子(勝算比OR為4.679, P = 0.0011)。 本部分實驗中,我們也發現AZD1152 – HQPA在肝癌細胞有良好的抗癌效果。 AZD1152 - HQPA治療導致顯著的Aurora B激酶活性被抑制,從而導致細胞週期紊亂,細胞凋亡和抑制肝癌細胞生長。我們的研究結果證明,對Aurora B激酶具選擇性的小分子抑制劑是有潛力的治療肝癌分子標靶藥物。然而,是否選擇性單獨針對Aurora B激酶抑制,或是同時抑制Aurora A 與Aurora B激酶,這兩種治療策略在肝癌孰優孰劣,非常需要我們設計更深入的轉譯與臨床研究探索。 在針對肝癌血管侵犯的多變項分析中,我們發現,肝癌血管侵犯與腫瘤大小大於五公分呈現正相關(勝算比為3.893, P = 0.0005)。另外,肝癌血管侵犯與Aurora B 激酶的過度表現(勝算比為2.659, P = 0.0183)亦呈現正相關,但和較好的組織學惡性度(grade I) 亦呈現負相關(勝算比為0.175, P = 0.0087)。這些結果顯示,Aurora B激酶是一個肝癌血管侵犯的獨立危險因子。在針對肝癌遠處轉移的多變項分析中則發現,肝癌遠處轉移與較晚期的腫瘤分期(勝算比為6.945,P < 0.0001)、Aurora A 激酶的過度表現(勝算比為4.195, P = 0.0027)呈現正相關。這部分分析則顯示,Aurora A激酶是一個肝癌肝癌遠處轉移的獨立危險因子。 第三部分Aurora激酶小分子抑制劑在肝癌的藥物合併治療 在本部分的研究中我們發現,VE-465會造成p-ERK的upregulation,我們推測這是一種肝癌細胞抵抗細胞凋亡的機轉。而sorafenib是一種有效的Raf-MEK-ERK路徑抑制物,在肝癌治療中也是臨床重要的治療藥物,因此我們接著嘗試合併VE-465和sorafenib處理肝癌細胞,結果發現這兩種藥物在Huh - 7和PLC/PRF/5細胞中具有細胞毒殺協同作用。我們的假說是sorafenib阻斷Raf-MEK-ERK路徑的活化,等於阻斷若干肝癌細胞抵抗VE-465導致細胞凋亡的機轉路徑,因此得以提高VE-465治療肝癌的療效。 | zh_TW |
| dc.description.abstract | 論文英文簡述 (Abstract in English)
Molecular therapeutics is the most promising field of contemporary cancer treatment modalities. Several molecule-targeted drugs have been used clinically in the treatment of lymphoma, and cancer of the lung, breast, colon, head and neck . Nevertheless, the molecular therapy of hepatocellular carcinoma (HCC), one of the most common fatal cancers in Taiwan, has not yet achieved any significant progress. Previous study indicated that molecular targets of HCC may be specific and different from other epithelial malignancies. Thus, searching for more effectivetherapeutic modalities such as modulating cellular signaling is mandatory for the exploration of molecular therapy in HCC. One set of mitotic kinases called Aurora kinases, which are thought to be key regulators of chromosome duplication, segregation, and cytokinesis. Are known to play critical roles in the development of a variety of human cancer, including HCC (clarify).There are three members of human Aurora kinase family, including Aurora A, B, and C. Many studies have shown amplification and overexpression of Aurora kinases in various human cancers in vitro and in vivo . The roles of overexpression of these kinases in oncogenesis have also been demonstrated. Frequent overexpression of Aurora A has been demonstrated in HCC, which plays important role in the tumor progression of HCC. Recent studies have shown that the inhibition of Aurora kinases can block cell proliferation and induce cell death via apoptosis in multiple types of human tumors. Profound repression of tumor growth was also achieved by inhibition of Aurora kinases in vivo. More importantly, clinically applicable inhibitors of Aurora kinases, such as VX-680, are quickly surfacing on the pipelines of key manufacturers. Thus, exploring the potential roles of these agents in the molecular therapy of HCC is both, is both academically and clinically imperative. Aurora A and Aurora B kinases share a high degree of sequence homology in their catalytic domains, and the overexpression has been identified in many human cancers. Despite their sequence similarity, Aurora A and Aurora B differ in chromosomal gene loci, subcellular localization, cellular functions, and signaling substrates. The enthusiasm of exploring Aurora kinases as anticancer therapeutic targets initially centered on Aurora A. However, recent studies have demonstrated that several Aurora kinase inhibitors exhibit anticancer activity resembling that of Aurora B disruption induced by genetic methods. Therefore, determination of the distinctive roles of Aurora A and Aurora B in carcinogenesis and their individual clinical significance is mandatory. Part I Preclinical studies of Aurora kinase inhibitor in the treatment of advanced hepatocellular carcinoma In mammals, there are three highly related Aurora kinases: Aurora A, B, and C. Overexpressions of Aurora A and Aurora B have been identified in many human cancers. Because of their roles in mitotic control, genomic instability and tumorigenesis, Aurora kinases have attracted much attention as potential cancer therapeutic targets. The inhibition of Aurora A by antisense oligonucleotides was first shown to effectively repress the tumor growth of lymphoma and pancreatic cancer cells. Later on, several Aurora kinase inhibitors were discovered, including VX-680 (MK-0457), ZM447439 , Hesperadin, PHA-680632, AZD1152, and MLN8054. VX-680 was the first Aurora kinase inhibitor showing broad antitumor activity in vitro and in vivo, and the foremost Aurora kinase inhibitor to be studied in clinical trials. Although clinical studies of Aurora kinase inhibitors have already reached phase II trials, their potential application in the treatment of HCC remains to be explored. We previously demonstrated frequent overexpression of Aurora A kinase, and its correlation with higher tumor grade and more advanced tumor stage in HCC. The unmet medical need for effective HCC treatment prompted us to investigate the therapeutic potential of Aurora kinase inhibitors. In this study, we tested VE-465, an analog of VX-680 with comparable potency in Aurora kinase inhibition, in both in vitro and in vivo HCC models. The results showed that VE-465 effectively inhibited Aurora kinase activity and induced mitotic disturbance, endoreduplication, apoptosis, and growth suppression of HCC. Our observations suggest that VE-465 is a promising therapeutic agent in HCC and deserves further investigation. The overexpression of Aurora A was associated with high-grade and high-stage tumors, and p53 mutation. These aggressive tumor phenotypes are characteristics of HCC with chromosome instability and imply that overexpression of Aurora kinases contributes to progression in human HCC. Furthermore, we found that overexpression of Aurora A contributed to worse patient survival. Consistently, Sistayanarain et al. reported that Aurora B transcripts were detectable in 12 (71%) out of 17 HCC cases. Okada et al.reported that a novel anticancer substance, MK-615, inhibited growth of HCC cells by suppressing Aurora A kinase activity. These findings indicate that Aurora kinases are potential therapeutic targets in HCC. In this study, we have demonstrated that VE-465, a novel Aurora kinase inhibitor, is a promising therapeutic agent in HCC. Firstly, we found that VE-465 suppressed tumor cell viability in the tested liver cancer cell lines in a concentration- and time-dependent manner. The IC50 values of VE-465 for Huh-7 and HepG2 were far below the plasma concentrations of VE-465 achievable in mouse models. Secondly, we showed that VE-465repressed the Aurora signaling evidenced by the steady downregulation of histone H3 (Ser10) phosphorylation in Huh-7 and HepG2 cells. Thirdly , VE-465 administration led to the inhibition of Aurora signaling, tumor growth suppression, and apoptosis in animal studies Taken together,these results suggest that Aurora kinases represent potential novel therapeutic targets in HCC. To better understand the anticancer effects of VE-465, we examined the morphologic changes in mitosis, cell cycle progression, and cell death in VE-465 treated liver cancer cells. VE-465 treatment led to the formation of monopolar spindles and the failure of centrosome maturation in Huh-7 and HepG2, which are remiscent of the functional deficiency of Aurora A. We also observed the detachment of chromosomes from the spindle structures in VE-465 treated HepG2 cells, implying dysregulation of Aurora B function. These mitotic disturbances induced by the inhibition of Aurora kinases may underlie the cytotoxic effects of VE-465 in HCC cells. Following aberrant mitosis induced by Aurora kinases inhibition, cancer cells may be arrested in a pseudo G1 state controlled by a p53-dependent postmitotic checkpoint. Consistent with this suggestion, we demonstrated that endoreduplication was more readily elicited in the p53-mutated Huh-7 cells (codon 220 mutation) compared with the wild-type p53 HepG2 cells. The p53 function is also regarded as a major determinant of apoptosis induced by Aurora kinase inhibitors, but the regulatory mechanisms remain elusive. We showed that sub-G1 peaks induced by VE-465 in Huh-7 were greater than those in HepG2 cells, which may be at least in part attributed to the loss of p53 checkpoints in Huh-7 cells. In summary, we demonstrated that VE-465 treatment resulted in profound inhibition of Aurora signaling in liver cancer cells, which led to defective mitosis, cell cycle arrest, endoreduplication, apoptosis, and eventually suppression of cancer cell growth. Our results suggest that VE-465 and probably other small-molecule inhibitors of Aurora kinases are promising in the treatment of HCC. Further clinical studies are needed to validate the therapeutic potential of Aurora kinase inhibitors in HCC patients. Part II Exploring the clinicopathologic significances of Aurora kinases overexpression in hepatocellular carcinoma We previously showed that Aurora A was overexpressed in 137 (61%) of 224 human HCCs and that the overexpression of Aurora A was associated with aggressive tumor characteristics and poor prognosis of patients. Furthermore, we demonstrated that VE-465, a novel pan-Aurora kinase inhibitor, had anticancer effects in preclinical experimental models of human HCC. These findings indicated that Aurora kinases may be important biomarkers and potential therapeutic targets in HCC. There are three highly related Aurora kinases in mammals, Aurora A, B, and C. Aurora A and Aurora B share a high degree of sequence homology in their catalytic domains, and their overexpressions have been identified in many human cancers. Despite their sequence similarity, Aurora A and Aurora B differ in chromosomal gene loci, subcellular localization, cellular functions, and signaling substrates. The Aurora A kinase gene is localized to chromosome 20q13.2, and Aurora B kinase to chromosome 17p13.1. (Repeatitive)Aurora A kinase protein is localized in the centrosome and spindle poles and plays important roles in centrosome maturation and spindle assembly. Aurora B kinase, which is a chromosome passenger protein localized in the centromeres during early mitosis and then at the spindle midzone after anaphase, is essential for chromosome biorientation, function of the spindle assembly checkpoint, and cytokinesis. The enthusiasm of exploring Aurora kinases as anticancer therapeutic targets initially centered on Aurora A, but recent studies have demonstrated that several Aurora kinase inhibitors exhibit anticancer activity resembling that of Aurora B disruption induced by genetic methods. Therefore, determination of the distinctive roles in carcinogenesis and individual clinical significance of Aurora A and Aurora B is mandatory. The aims of this study were to elucidate the clinicopathologic significance of Aurora B expression and Aurora A expression in HCC and to correlate their expression with p53 and β-catenin mutations, the two most frequently mutated genes in HCC. Despite the sequence homology and common association with mitotic regulatory events, Aurora A and Aurora B differ in the subcellular localization and signaling substrates , and hence possess essentially distinctthe functions. We have reported that Aurora A is highly expressed in HCC and that the overexpression is closely associated with aggressive tumor phenotypes and worse patient prognosis. But the clinicopathologic significance of Aurora B in HCC progression remains to be clarified. In this study, we demonstrated that overexpressions of Aurora A and Aurora B were detected in 63% and 61% of 160 surgically resected, primary unifocal HCCs, respectively. By multivariate analyses, we showed that Aurora B overexpression was associated with high-stage (stages IIIA, IIIB, and IV) HCCs, which exhibit vascular invasion and various extents of intrahepatic spread (OR, 7.439; P = 0.0003). These findings suggest that overexpression of Aurora B is associated with tumor invasion and intrahepatic metastasis of HCC, as having been shown in Aurora A.Our findings suggest that Aurora B overexpression serves as a useful marker predicting ETR and hence poor prognosis. In the present study, we showed AZD1152-HQPA, an Aurora B selective inhibitor, exerted anticancer effects in HCC cells. AZD1152-HQPA treatment resulted in profound inhibition of Aurora B signaling, which in turn led to cell cycle disturbance, apoptosis, and growth suppression in HCC cells. Our results suggest that Aurora B selective inhibitors are potential drugs for HCC treatment, confirming the observation that AZD1152 is a novel promising therapeutic approach for HCC. We previously demonstrated that Aurora B overexpression correlated well with higher histology grade and more advanced stage of hepatocellular carcinoma (HCC). In this part of study, we sought to analyze the association between Aurora B overexpression and vascular invasion/metastasis of HCC, as well as the potential of AZD1152, a novel and selective Aurora B kinase inhibitor in preventing vascular invasion and metastasis of HCC. Univariate analysis showed that vascular invasion and metastasis were both associated with younger age ( | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:03:07Z (GMT). No. of bitstreams: 1 ntu-99-D91421004-1.pdf: 6240010 bytes, checksum: 11d11d56a903ca312764b0940940647a (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目錄 (CONTENTS)
中文摘要(Abstract in Chinese) 3 緒論 (Introduction) 13 研究方法與材料(Materials and Methods) 33 結果(Results) 46 討論(Discussion) 57 展望(Perspectives) 76 論文英文簡述 (Abstract in English) 86 參考文獻 (References) 93 圖表 (Tables and Figures) 107 附錄 (Appendix) 131 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肝細胞癌 | zh_TW |
| dc.subject | 分子標靶治療 | zh_TW |
| dc.subject | Aurora激酶 | zh_TW |
| dc.subject | molecular targeted therapy | en |
| dc.subject | hepatocellular carcinoma | en |
| dc.subject | Aurora kinase | en |
| dc.title | 以Aurora 激酶為標靶之肝癌分子治療探索 | zh_TW |
| dc.title | Exploring Molecular Targeted Therapy for
Hepatoceccular Carcinoma: Focus on Aurora Kinases | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.advisor-orcid | ,許輝吉(heychi@ntu.edu.tw) | |
| dc.contributor.oralexamcommittee | 高嘉宏(Jia-Horng Kao),張俊彥(Jang-Yang Chang),黃奇英(Chi-Ying F. Huang) | |
| dc.subject.keyword | 肝細胞癌,分子標靶治療,Aurora激酶, | zh_TW |
| dc.subject.keyword | hepatocellular carcinoma,molecular targeted therapy,Aurora kinase, | en |
| dc.relation.page | 129 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-01-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 6.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
