Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48567
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 郭明良 | |
dc.contributor.author | Min-Wei Chen | en |
dc.contributor.author | 陳民瑋 | zh_TW |
dc.date.accessioned | 2021-06-15T07:02:26Z | - |
dc.date.available | 2012-03-03 | |
dc.date.copyright | 2011-03-03 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2011-01-13 | |
dc.identifier.citation | 1. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41-5.
2. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004;429:457-63. 3. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002;3:415-28. 4. Yahi H, Philipot O, Guasconi V, Fritsch L, Ait-Si-Ali S. Chromatin modification and muscle differentiation. Expert Opin Ther Targets 2006;10:923-34. 5. Callis TE, Chen JF, Wang DZ. MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol 2007;26:219-25. 6. Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006;38:228-33. 7. Wong CF, Tellam RL. MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem 2008;283:9836-43. 8. Sander S, Bullinger L, Klapproth K, et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 2008;112:4202-12. 9. Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 2007;104:15805-10. 10. Varambally S, Cao Q, Mani RS, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008;322:1695-9. 11. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003;349:2042-54. 12. Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007;39:457-66. 13. Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene 2001;20:3139-55. 14. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004;4:143-53. 15. Fraga MF, Herranz M, Espada J, et al. A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res 2004;64:5527-34. 16. Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003;300:455. 17. Bestor TH. Transposons reanimated in mice. Cell 2005;122:322-5. 18. Feinberg AP. Imprinting of a genomic domain of 11p15 and loss of imprinting in cancer: an introduction. Cancer Res 1999;59:1743s-6s. 19. Esteller M, Silva JM, Dominguez G, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 2000;92:564-9. 20. Esteller M, Herman JG. Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene 2004;23:1-8. 21. Pruitt K, Zinn RL, Ohm JE, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2006;2:e40. 22. Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005;37:391-400. 23. Ballestar E, Paz MF, Valle L, et al. Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. Embo J 2003;22:6335-45. 24. Fahrner JA, Eguchi S, Herman JG, Baylin SB. Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res 2002;62:7213-8. 25. Nguyen CT, Gonzales FA, Jones PA. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res 2001;29:4598-606. 26. Dong KB, Maksakova IA, Mohn F, et al. DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J 2008;27:2691-701. 27. Ikegami K, Iwatani M, Suzuki M, et al. Genome-wide and locus-specific DNA hypomethylation in G9a deficient mouse embryonic stem cells. Genes Cells 2007;12:1-11. 28. Bachman KE, Park BH, Rhee I, et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 2003;3:89-95. 29. Wozniak RJ, Klimecki WT, Lau SS, Feinstein Y, Futscher BW. 5-Aza-2'-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation. Oncogene 2007;26:77-90. 30. Seligson DB, Horvath S, Shi T, et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 2005;435:1262-6. 31. Park YS, Jin MY, Kim YJ, Yook JH, Kim BS, Jang SJ. The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol 2008;15:1968-76. 32. Wei Y, Xia W, Zhang Z, et al. Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog 2008;47:701-6. 33. Kondo Y. Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med J 2009;50:455-63. 34. Esteller M. Epigenetics in cancer. N Engl J Med 2008;358:1148-59. 35. Mack GS. Epigenetic cancer therapy makes headway. J Natl Cancer Inst 2006;98:1443-4. 36. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007;128:669-81. 37. Hublitz P, Albert M, Peters AH. Mechanisms of transcriptional repression by histone lysine methylation. Int J Dev Biol 2009;53:335-54. 38. Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell 2007;129:823-37. 39. Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998;393:386-9. 40. Jones PL, Veenstra GJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998;19:187-91. 41. Esteve PO, Chin HG, Smallwood A, et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev 2006;20:3089-103. 42. Okitsu CY, Hsieh CL. DNA methylation dictates histone H3K4 methylation. Mol Cell Biol 2007;27:2746-57. 43. Feldman N, Gerson A, Fang J, et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 2006;8:188-94. 44. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009;10:295-304. 45. Tachibana M, Sugimoto K, Fukushima T, Shinkai Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 2001;276:25309-17. 46. Rice JC, Briggs SD, Ueberheide B, et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 2003;12:1591-8. 47. Tachibana M, Sugimoto K, Nozaki M, et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 2002;16:1779-91. 48. Sedgwick SG, Smerdon SJ. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 1999;24:311-6. 49. Esteve PO, Patnaik D, Chin HG, Benner J, Teitell MA, Pradhan S. Functional analysis of the N- and C-terminus of mammalian G9a histone H3 methyltransferase. Nucleic Acids Res 2005;33:3211-23. 50. Brown SE, Campbell RD, Sanderson CM. Novel NG36/G9a gene products encoded within the human and mouse MHC class III regions. Mamm Genome 2001;12:916-24. 51. Boulias K, Talianidis I. Functional role of G9a-induced histone methylation in small heterodimer partner-mediated transcriptional repression. Nucleic Acids Res 2004;32:6096-103. 52. Gyory I, Wu J, Fejer G, Seto E, Wright KL. PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat Immunol 2004;5:299-308. 53. Nishio H, Walsh MJ. CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription. Proc Natl Acad Sci U S A 2004;101:11257-62. 54. Roopra A, Qazi R, Schoenike B, Daley TJ, Morrison JF. Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol Cell 2004;14:727-38. 55. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 2006;6:846-56. 56. Burdach S, Plehm S, Unland R, et al. Epigenetic maintenance of stemness and malignancy in peripheral neuroectodermal tumors by EZH2. Cell Cycle 2009;8:1991-6. 57. Suva ML, Riggi N, Janiszewska M, et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res 2009;69:9211-8. 58. Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 2008;647:21-9. 59. Kirmizis A, Bartley SM, Farnham PJ. Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther 2003;2:113-21. 60. Kondo Y, Shen L, Suzuki S, et al. Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas. Hepatol Res 2007;37:974-83. 61. Kassambara A, Klein B, Moreaux J. MMSET is overexpressed in cancers: link with tumor aggressiveness. Biochem Biophys Res Commun 2009;379:840-5. 62. Watanabe H, Soejima K, Yasuda H, et al. Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells. Cancer Cell Int 2008;8:15. 63. Kondo Y, Shen L, Ahmed S, et al. Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS ONE 2008;3:e2037. 64. Steeg PS. Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer 2003;3:55-63. 65. Bryant RJ, Cross NA, Eaton CL, Hamdy FC, Cunliffe VT. EZH2 promotes proliferation and invasiveness of prostate cancer cells. Prostate 2007;67:547-56. 66. Choi JH, Song YS, Yoon JS, Song KW, Lee YY. Enhancer of zeste homolog 2 expression is associated with tumor cell proliferation and metastasis in gastric cancer. APMIS 2010;118:196-202. 67. Min J, Zaslavsky A, Fedele G, et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 2010. 68. Kulka J, Tokes AM, Toth AI, et al. [Immunohistochemical phenotype of breast carcinomas predicts the effectiveness of primary systemic therapy]. Magy Onkol 2009;53:335-43. 69. Abd El-Rehim DM, Pinder SE, Paish CE, et al. Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol 2004;203:661-71. 70. Sobin LH, Fleming ID. TNM Classification of Malignant Tumors, fifth edition (1997). Union Internationale Contre le Cancer and the American Joint Committee on Cancer. Cancer 1997;80:1803-4. 71. Chu YW, Yang PC, Yang SC, et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 1997;17:353-60. 72. Tai KY, Shiah SG, Shieh YS, et al. DNA methylation and histone modification regulate silencing of epithelial cell adhesion molecule for tumor invasion and progression. Oncogene 2007;26:3989-97. 73. Onn A, Isobe T, Itasaka S, et al. Development of an orthotopic model to study the biology and therapy of primary human lung cancer in nude mice. Clin Cancer Res 2003;9:5532-9. 74. Dobrovic A, Bianco T, Tan LW, Sanders T, Hussey D. Screening for and analysis of methylation differences using methylation-sensitive single-strand conformation analysis. Methods 2002;27:134-8. 75. Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 1995;92:9363-7. 76. Tachibana M, Ueda J, Fukuda M, et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 2005;19:815-26. 77. Zhang X, Tamaru H, Khan SI, et al. Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 2002;111:117-27. 78. Zhang X, Yang Z, Khan SI, et al. Structural basis for the product specificity of histone lysine methyltransferases. Mol Cell 2003;12:177-85. 79. McLaughlin PM, Trzpis M, Kroesen BJ, et al. Use of the EGP-2/Ep-CAM promoter for targeted expression of heterologous genes in carcinoma derived cell lines. Cancer Gene Ther 2004;11:603-12. 80. Schwartz PE. The management of serous papillary uterine cancer. Curr Opin Oncol 2006;18:494-9. 81. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003;3:401-10. 82. Cuellar TL, McManus MT. MicroRNAs and endocrine biology. J Endocrinol 2005;187:327-32. 83. Seligson DB, Horvath S, McBrian MA, et al. Global levels of histone modifications predict prognosis in different cancers. Am J Pathol 2009;174:1619-28. 84. Ellinger J, Kahl P, von der Gathen J, et al. Global levels of histone modifications predict prostate cancer recurrence. Prostate 2010;70:61-9. 85. Ng SS, Kavanagh KL, McDonough MA, et al. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 2007;448:87-91. 86. Cloos PA, Christensen J, Agger K, et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 2006;442:307-11. 87. Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004;119:941-53. 88. Tachibana M, Matsumura Y, Fukuda M, Kimura H, Shinkai Y. G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. EMBO J 2008;27:2681-90. 89. Ueda J, Tachibana M, Ikura T, Shinkai Y. Zinc finger protein Wiz links G9a/GLP histone methyltransferases to the co-repressor molecule CtBP. J Biol Chem 2006;281:20120-8. 90. Litvinov SV, Velders MP, Bakker HA, Fleuren GJ, Warnaar SO. Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. J Cell Biol 1994;125:437-46. 91. Gosens MJ, van Kempen LC, van de Velde CJ, van Krieken JH, Nagtegaal ID. Loss of membranous Ep-CAM in budding colorectal carcinoma cells. Mod Pathol 2007;20:221-32. 92. Basak S, Speicher D, Eck S, et al. Colorectal carcinoma invasion inhibition by CO17-1A/GA733 antigen and its murine homologue. J Natl Cancer Inst 1998;90:691-7. 93. Rao CG, Chianese D, Doyle GV, et al. Expression of epithelial cell adhesion molecule in carcinoma cells present in blood and primary and metastatic tumors. Int J Oncol 2005;27:49-57. 94. Takes RP, Baatenburg de Jong RJ, Wijffels K, et al. Expression of genetic markers in lymph node metastases compared with their primary tumours in head and neck cancer. J Pathol 2001;194:298-302. 95. Kim JH, Herlyn D, Wong KK, et al. Identification of epithelial cell adhesion molecule autoantibody in patients with ovarian cancer. Clin Cancer Res 2003;9:4782-91. 96. Songun I, Litvinov SV, van de Velde CJ, Pals ST, Hermans J, van Krieken JH. Loss of Ep-CAM (CO17-1A) expression predicts survival in patients with gastric cancer. Br J Cancer 2005;92:1767-72. 97. Joo M, Kim H, Kim MK, Yu HJ, Kim JP. Expression of Ep-CAM in intestinal metaplasia, gastric epithelial dysplasia and gastric adenocarcinoma. J Gastroenterol Hepatol 2005;20:1039-45. 98. Piyathilake CJ, Frost AR, Weiss H, Manne U, Heimburger DC, Grizzle WE. The expression of Ep-CAM (17-1A) in squamous cell cancers of the lung. Hum Pathol 2000;31:482-7. 99. Went P, Vasei M, Bubendorf L, et al. Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br J Cancer 2006;94:128-35. 100. Lorier JL, Godfroid P, Hart Y, Roberts R. Levetiracetam: an innovative and cost-effective add-on drug for refractory partial epilepsy. Expert Rev Pharmacoecon Outcomes Res 2004;4:143-51. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48567 | - |
dc.description.abstract | G9a 是一種哺乳動物的組蛋白甲基轉移酶,有助於抑癌基因的非遺傳層次基因靜默。新的證據顯示,G9a 是維持腫瘤惡性型態所必須的,但G9a 對腫瘤轉移功能的調控並未被探討。本研究證實,在高度侵襲能力的肺癌細胞,G9a 的表現有增高的趨勢,並且高表現的G9a 和病人預後差呈現相關性。在高G9a 表現的肺癌細胞株,利用RNA 干擾技術抑制內生性的G9a 表現,在細胞實驗和動物實驗中均觀察到癌細胞移動和侵襲轉移能力受到抑制。另一方面,在G9a 表現低的肺癌細胞株,外送G9a 表現載體使肺癌細胞的G9a 過度表現,亦能促進癌細胞的侵襲和轉移。機制研究顯示,G9a 所造成的效應主要是經由抑制細胞粘附分子 (Ep-CAM)所導致。首先,RNA 干擾所造成的Ep-CAM 抑制,部分回復G9a 抑制所導致的轉移抑制作用。第二、在臨床病人的原位肺癌組織,G9a 和Ep-CAM 的表現呈現負相關性。第三、Ep-CAM 的抑制是與啟動子甲基化和組蛋白H3K9 的二甲基化累積有關。G9a 抑制造成H3K9 甲基化程度的減緩,降低了HP1、DNMT1 和HDAC1的轉錄輔助因子被聚集到的Ep-CAM 的啟動子。我們的研究結果建立一個G9a 過度表現所導致的非基因層次路徑的失調在肺癌的癌症進程中的功能性角色。此外,G9a 可能在癌細胞的移動力、存活及血管新生活性中具有功能。我們的研究結果顯示,發展G9a 抑制劑為治療標的在控制腫瘤生長及轉移的價值。本研究中,我們也建立了篩選G9a 抑制劑的快速篩選平台。 | zh_TW |
dc.description.abstract | G9a is a mammalian histone methyltransferase that contributes to the epigenetic silencing of tumor suppressor genes. Emerging evidence suggests that G9a is required to maintain the malignant phenotype, but the role of G9a function in mediating tumor metastasis has not been explored. Here, we show that G9a is expressed in aggressive lung cancer cells, and its elevated expression correlates with poor prognosis. RNAi-mediated knockdown of G9a in highly invasive lung cancer cells inhibited cell migration and invasion in vitro and metastasis in vivo. Conversely, ectopic G9a expression in weakly invasive lung cancer cells increased motility and metastasis. Mechanistic investigations suggested that repression of the cell adhesion molecule Ep-CAM mediated the effects of G9a. First, RNAi-mediated knockdown of Ep-CAM partially relieved metastasis suppression imposed by G9a suppression. Second, an inverse correlation between G9a and Ep-CAM expression existed in primary lung cancer. Third, Ep-CAM repression was associated with promoter methylation and an enrichment for dimethylated histone H3K9. G9a knockdown reduced the levels of H3K9 dimethylation and decreased the recruitment of the transcriptional cofactors HP1, DNMT1, and HDAC1 to the Ep-CAM promoter. Our findings establish a functional contribution of G9a overexpression with concomitant dysregulation of epigenetic pathways in lung cancer progression. In addition, G9a may also have functions in cancer cell motility, survival and angiogenic activity. Our results underscore the utility of developing G9a inhibitors as a potentially powerful therapeutic target. We also established the HTS platform for inhibitors against the G9a. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T07:02:26Z (GMT). No. of bitstreams: 1 ntu-99-D92447001-1.pdf: 8579480 bytes, checksum: 539100e0becc05c55567e3a54cdb552a (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 中文摘要 ...................................1
Abstract ................... ..............2 Chapter 1. Introduction ...................5 1.1 Definition of epigenetics ..............5 1.2 Mechanisms of epigenetic modification....5 1.2.1 miRNAs as regulators of the epigenetic machinery ...6 1.2.2 DNA methylation.........................7 1.2.3 Histone modification....................8 1.2.4 Interrelation between DNA methylation and histone modification......9 1.3 The functions of G9a……………………………………………………... 11 1.4 Histone methyltransferase and cancer progression.....13 Chapter 2. Materials and Methods..........................15 Chapter 3. Results..............................23 3.1 G9a expression in lung cancer is associated with poor prognosis...............23 3.2 G9a expression enhances the invasive ability of lung cancer cells. ............24 3.3 G9a expression promotes metastasis in vivo ...............................................25 3.4 Ep-CAM is a direct and functional target in G9a-induced migration and Invasion.. 26 3.5 G9a induces assembly of a repressor complex at the Ep-CAM promoter...........................................28 3.6 G9a expression enhances the motility, survival and capillary-like tube formation in cancer cells....29 3.7 High through-put screen (HTS) platform for chemical inhibitor against the G9a HMTase........................30 Chapter 4. Discussion ....................32 References................................37 Figures and figure legends ...............43 Supplemental tables.......................52 Figures ..................................54 Appendix Publication lis...........................75 | |
dc.language.iso | en | |
dc.title | H3K9 組蛋白甲基轉移酶 G9a 促進癌症侵襲及轉移之探討 | zh_TW |
dc.title | H3K9 Histone Methyltransferase G9a Promotes Cancer Cell Invasion and Metastasis | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王朝鐘,洪文俊,莊雙恩,蕭宏昇 | |
dc.subject.keyword | G9a,H3K9二甲基化作用,肺轉移,細胞粘附分子,預後因子, | zh_TW |
dc.subject.keyword | G9a,H3K9 dimethylation,lung metastasis,Ep-CAM,prognostic factor, | en |
dc.relation.page | 76 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-01-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
Appears in Collections: | 毒理學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-99-1.pdf Restricted Access | 8.38 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.